Sporcularda Bacak Hacmi, Kütlesi, Hamstring/Quadriceps Oranı ile Anaerobik Performans ve İzokinetik Bacak Kuvveti Arasındaki İlişki

Bu çalışma farklı spor dallarındaki sporcularda bacak hacmi, kütlesi, hamstring/quadriceps oranı ile anaerobik performans ve izokinetik bacak kuvveti arasındaki ilişkinin belirlenmesi amacıyla yapılmıştır. Çalışmaya basketbol (n= 12), voleybol (n=14) ve futbol (n=15) branşlarında toplam 41 erkek sporcu gönüllü olarak katılmıştır. Sporcuların bacak hacmi Frustum yöntemi ile, bacak kütlesi ise Hanavan yöntemi ile belirlenmiştir. Anaerobik performansın belirlenmesinde Wingate anaerobik güç ve kapasite testi kullanılırken izokinetik kuvvetin belirlenmesinde konsantrik diz fleksiyon ve ekstansiyon kuvvetleri ve H/Q oranı için 60º ve 300º’lik hızlar kullanılmıştır. Yapılan Pearson Çarpımlar Moment Korelasyon sonucunda futbolcularda sağ 60º.s-1 H/Q ile ROG (r=-.552; p < 0.05), sağ 60º.s-1 KDE (r=-.586; p < 0.05), sağ 300º.s-1 KDE (r=-.589; p < 0.05) ve sağ 60º.s-1 KDF (r=-.558; p < 0.05) arasında anlamlı ilişki bulunurken, sol 60º.s-1 H/Q oranı ile ROG (r=-.561; p < 0.05), sağ 60º.s-1 KDF (r=-.698; p < 0.01), sağ 300º.s-1 KDF (r=.622; p < 0.05), sol 60º.s-1 KDE (r=-.613; p < 0.05) arasında bulunmuştur. Benzer bir ilişki de sağ 300º.s-1 H/Q oranı ile sağ 60º.s1 KDF (r=-.537; p < 0.05) belirlenirken sol 300º.s-1 H/Q oranı ile sol 60º.s-1 KDF (r=-.528; p < 0.05) arasında bulunmuştur. Basketbolcularda ise sağ BH ile MG (r=.738; p < 0.01), RMG (r=.650; p < 0.05), sağ 300º.s-1 KDF (r=.697; p < 0.01), sol 60º.s-1 KDE (r=.766; p < 0.01), sol 300º.s-1 KDE (r=.818; p < 0.01) ve sol 300º.s-1 KDF (r=.748; p < 0.01) arasında anlamlı ilişki bulunurken, benzer bir ilişki de sağ BK ile MG (r=.618; p < 0.05) , sol 60º.s-1 KDE (r=.766; p < 0.01), sol 300º.s-1 KDE (r=.866; p < 0.01), sağ 300º.s-1 KDF (r=.840; p < 0.01) ve sol 300º.s-1 KDF (r=.832; p < 0.01 arasında bulunmuştur. Ayrıca sağ 60º.s-1 H/Q ile ROG (r=.671; p < 0.05), sağ 60º.s-1 KDE (r=.757; p < 0.01), sol 300º.s-1 KDE (r=.647; p < 0.05), sağ 60º.s-1 KDF (r=.913; p < 0.01), sol 60º.s-1 KDF (r=.591; p < 0.05) ve sol 300º.s-1 KDF (r=-.640; p < 0.05) anlamlı bir ilişki bulunurken sağ 300º.s-1 H/Q ile MG (r=-.579; p < 0.05), sol 300º.s-1 KDE (r=-.690; p < 0.05), sağ 60º.s-1 KDF (r=-.624; p < 0.05), sağ 300º.s-1 KDF (r=- .940; p < 0.01), sol 300º.s-1 KDF (r=-.739; p < 0.01) arasında bulunmuştur. Sol BH ile MG (r=.633; p < 0.05), RMG (r=- .576; p < 0.05), sol 60º.s-1 KDE (r=.757; p < 0.01), sol 60º.s-1 KDE (r=.757; p < 0.01), 300º.s-1 KDE (r=.866; p < 0.01), sağ 300º.s-1 KDF (r=.753; p < 0.01), sol 300º.s-1 KDF (r= -.818; p < 0.05) arasında anlamlı ilişki bulunurken, sol BK ile MG (r=.669; p < 0.05), sol 300º.s-1 KDE (r=.855; p < 0.01), sağ 60º.s-1 KDE (r=.673; p < 0.01), sağ 300º.s-1 KDF (r= .837; p < 0.01), sol 300º.s-1 KDF (r= .841; p < 0.01) arasında anlamlı bir ilişki belirlenmiştir. Benzer şekilde sol 60º.s-1 H/Q oranı ile MG (r=-.663; p < 0.01), RMG (r=.857; p < 0.01), ROG (r=- .849; p < 0.01), sağ 60º.s-1 KDE (r=.620; p < 0.01), sol 60º.s-1 KDE (r=.809; p < 0.01), sağ 60º.s-1 KDF (r=-.727; p < 0.01) arasında anlamlı ilişki belirlenirken sol 300º.s-1 H/Q oranı ile sol 60º.s-1 KDF (r=-.611; p < 0.05), sağ 300º.s-1 KDF (r= -.854; p < 0.01), sol 300º.s-1 KDF (r= -.625; p < 0.05) arasında belirlenmiştir. Voleybolculara bakıldığında ise sağ BH ile OG (r=.568; p < 0.05) ve sol 60º.s-1 KDF (r=.721; p < 0.01) arasında anlamlı bir ilişki bulunurken sağ 60º.s-1 H/Q ile sağ 60º.s-1 KDE (r=.971; p < 0.01), sağ 300º.s-1 KDE (r= .845; p < 0.01), sol 300º.s-1 KDE (r= .559; p < 0.05) arasında bulunmuştur. Benzer şekilde sağ 300º.s-1 H/Q ile sağ 60º.s-1 KDE (r=.575; p < 0.05), sağ 300º.s-1 KDE (r= .766; p < 0.01), sol 300º.s-1 KDE (r=.855; p < 0.01), sağ 60º.s-1 KDF (r= -.777; p < 0.01) arasında anlamlı ilişki belirlenirken sağ 300º.s-1 H/Q ile sağ 60º.s-1 KDE (r= -.575; p < 0.05), sağ 300º.s-1 KDE (r= .766; p < 0.01), sol 300º.s-1 KDE (r=.855; p < 0.01), sağ 60º.s-1 KDF (r=-.777; p < 0.01) arasında anlamlı ilişki belirlenmiştir. Bu sonuçlara ek olarak sol BH ile OG (r= .564; p < 0.05), sol 60º.s-1 KDF (r=.788; p < 0.01) ve sol BK ile OG (r= .731; p < 0.01), arasında anlamlı bir ilişki bulunurken sol 60º.s-1 H/Q ile RMG (r=.666; p < 0.01), ROG (r=-.635; p < 0.05), sağ 60º.s-1 KDF (r=-.749; p < 0.01), sol 300º.s-1 KDF 

The Association among Leg Volume, Leg Mass and H/Q Ratio with Anaerobic Performance and Isokinetic Knee Strength in Athletes

The purpose of the present study was to determine the relationship among leg volume, leg mass and H/Q ratio with anaerobic performance and isokinetic knee strength in athletes from different sport branches. A total of 41 male athletes from basketball (n= 12), volleyball (n=14) and football (n=15) participated in this study voluntarily. Athletes’ leg volume (LV) was determined by Frustum method and leg mass (LM) was determined by Hanavan model. Anaerobic performances of athletes was determined by Wingate anaerobic power test and isokinetic knee strength and H/Q ratio was determined at 600s-1and 3000s-1. In football players significant correlations was obtained between right 60º.s-1 H/Q ratio and relative mean power (RMP) (r=-.552; p<0.05), right 60º.s1 knee extension strength (KES) (r=-.586; p<0.05), right 300º.s-1 KES (r=-.589; p<0.05), right 60º.s-1 knee flexion strength (KFS) (r=-.558; p<0.05). Left 60º.s-1 H/Q was significantly correlated with RMP (r=-.561; p<0.05), right 60º.s-1 KFS (r=-.698; p<0.01), right 300º.s-1 KFS (r=.622; p<0.05), left 60º.s-1 KES (r=-.613; p<0.05). A similar relation was obtained between right 300º.s-1 H/Q and right KFS (r=-.537; p<0.05).Left 300º.s-1 H/Q on the other hand was significantly correlated with left 60º.s-1 KFS(r=-.528; p<0.05). In basketball players significant correlations was obtained between right LV and peak power (PP) (r=.738; p<0.01), relative PP (RPP) (r=.650; p<0.05), right 300º.s-1 KES (r=.697; p<0.01), left 60º.s-1 KES (r=.766; p<0.01), left 300º.s-1 KES (r=.818; p<0.01), left 300º.s-1 KFS (r=.748; p<0.01). A similar relation was obtained between right LV and PP (r=.618; p<0.05) left 60º.s-1 KES (r=.766; p<0.01), left 300º.s-1 KES (r=.866; p<0.01), right 300º.s-1 KFS (r=.840; p<0.01), left 300º.s-1 KFS (r=.832; p<0.01). On the other hand right 60º.s-1 H/Q was significantly correlated with relative mean power (RMP) (r=.671; p<0.05), right 60º.s-1 KES (r=.727; p<0.01), right 300º.s-1 KES (r=.647; p<0.05), right 60º.s-1 KFS (r=.913; p<0.01), left 60º.s-1 KFS (r=.591; p<0.05), left 300º.s-1 KFS (r=-.640; p<0.05). Right 300º.s-1 H/Q was significantly correlated with PP (r=-.579; p<0.05), left 300º.s-1 KES (r=-.690; p<0.05), right 60º.s-1 KFS (r=-.624; p<0.05), right 300º.s-1 KFS (r=-.940; p<0.01), left 300º.s-1 KFS (r=-.739; p<0.01). Left LV was significantly correlated with PP(r=.633; p<0.05), RPP(r=-.576; p<0.05), left 60º.s-1 KES (r=.757; p<0.01), left 300º.s-1 KES (r=.866; p<0.01), right 300º.s-1 KFS (r=.753; p<0.01), left 300º.s-1 KFS (r= -.818; p<0.05) and Left leg mass (LM) was significantly related with PP (r=.669; p<0.05),left 300º.s-1 KES (r=.855; p<0.01), right 60º.s-1 KES (r=.673; p<0.01), right 300º.s-1 KFS (r= .837; p<0.01), left 300º.s-1 KFS (r= .841; p<0.01). A similar relation was obtained between left 60º.s-1 H/Q and PP(r=-.663; p<0.01), RPP (r=.857; p<0.01), RMP(r=-.849; p<0.01), right 60º.s-1 KES (r=.620; p<0.01), left 60º.s-1 KES (r=.809; p<0.01), right 60º.s-1 KFS (r=-.727;p<0.01). On the other hand left 300º.s-1 H/Q was significantly correlated with left 60º.s-1 KFS (r=-.611; p<0.05), right 300º.s1 KFs (r= -.854; p<0.01), left 300º.s-1 KFS (r= -.625; p<0.05). In voleyball players significant correlations was obtained between right LV and MP (r=.568; p<0.05), left 60º.s-1 KFS (r=.721; p<0.01) and right 60º.s-1 H/Q was significantly correlated with right 60º.s-1 KES (r=.971; p<0.01), right 300º.s-1 KES (r= .845; p<0.01), left 300º.s-1 KES (r= .559; p<0.05). A similar relation was obtained between right 300º.s-1 H/Q and 60º.s-1 KES (r=.575; p<0.05), right300º.s-1 KES (r= .766; p<0.01), left 300º.s-1 KES (r=.855; p<0.01), right 60º.s-1 KFS (r= -.777; p<0.01). right 300º.s1 H/Q was significantly related with right 60º.s-1 KES (r= -.575; p<0.05), right 300º.s-1 KES (r= .766; p<0.01), left 300º.s-1 KES (r=.855; p<0.01), right 60º.s-1 KFS (r=-.777; p<0.01). On the other hand left LV was significantly correlated with MP (r= .564; p<0.05), left 60º.s-1 KFS (r=.788; p<0.01) and left LM with MP (r= .731; p<0.01). Left 60º.s1 H/Q was significantly correlated with RPP (r=.666; p<0.01), RMP (r=-.635; p<0.05), right 60º.s-1 KFS (r=-.749; p<0.01), left 300º.s-1 KFS (r=-.652; p<0.05) and left 300º.s1 H/Q was significantly related with RPP (r=-.679; p<0.05), MP (r= -.547; p<0.05), RMP (r=-.596; p<0.05), left 300º.s  KES (r=.704; p<0.01), right 60º.s-1 KFS (r=-.794; p<0.01), left 60º.s-1 KFS (r=-.737; p<0.01), left 300º.s-1 KFS (r=-.644; p<0.05). As a conclusion, leg volume, leg mass and H/Q ratio were found to play important role in anaerobic power and isokinetic knee extension strength in basketball and volleyball players and H/Q ratio were found to play important role in football players.

___

  • Armstrong N, Welsman JR, Chia MYH. (2001). Short term power output in relation to growth and maturation. British Journal of Sports Medicine, 35, 118-124.
  • Astrand PO, Rodahl K, Dahl AH, Stromme BS. (2003) (Der.). Textbook of work phyiology. Australia: Human Kinetics.
  • Baecchle TR, Earle RW. (2000). Plyometric training. Potach, D. H. & Chu, D. A.(Der.). Essential of Strength Training and Conditioning, Canada: Human Kinetics.
  • Bencke J, Damsgaard R, Saekmose A, Jorgenson P, Jorgenson K, Klauen K. (2002). Anaerobic power and muscle strength characteristics of 11 years old elite and non-elite boys and girls from gymnastics, team handball, tennis and swimming. Scandinavian Journal of Medicine and Science in Sports, 12, 171-178.
  • Bloomfield J, Ackland TR, Elliot BC. (1994). Applied Anatomy and Biomechanics in Sport. Blackwell Scientific Publications.
  • Caluo M, Rodos G, Vallejo M, Estroch A, Arcas A, Javenre C ve diğ. (2002). Heritability of explosive power and anaerobic capacity in humans. European Journal of Applied Physiology, 86, 218-225.
  • Coombs R, Garbutt G. (2002). Developments in use of the hamstring/quadriceps ratio for the assessment of muscle balance. Journal of Sports Science and Medicine, 1, 56-62.
  • De Ste Croix MBA, Armstrong N, Chia MYH, Welsman JR, Parsons G, Sharpe P. (2000). Changes in short- term power output in 10 to 12–year-olds. Journal of Sports of Sciences, 19, 141-148.
  • Dore E, Bedu M, França NM, Praagh EV. (2001). Anaerobic cycling performance characteristics in prepubescent, adolescent and young adults females. European Journal of Applied Physiology, 84, 476-481.
  • Dowsan MN, Nevill ME, Lakomy HK, Hazeldine RJ. (1998). Modelling the relationship between isokinetic muscle strength amd sprint running performance. Journal of Sports Sciences, 16, 257-265.
  • Heyward VH, Stolarczyk LM. (1996). Applied Body Composition Assessment. 2nd ed. Champaign IL: Human Kinetics, 21-43.
  • Ingulf J, Burgers S. (1990). Effects of training on the anaerobic capacity, department of physiology. National Institute of Occupational Health, Norway.
  • Jackson AS, Pollock ML. (1978). Generalized equations for predicting body density of men. British Journal of Nutrition, 40, 497-504.
  • Koşar N, Kin İşler A. (2004). Üniversite öğrencilerinin wingate anaerobic performans profili ve cinsiyet farklılıkları. Spor Bilimleri Dergisi, 15 (1), 25-38.
  • Kwon YH. (1998) Modified Hanavan Model. 09.02.2006, http://www.kwon3d.com/theory/bspeq/hanavan.html/.
  • Mayhew JL, Hancook K, Rollisan L, Ball TE, Bowen JC. (2001). Contributions of strength and body composition to the gender difference in anaerobic power. Journal of Sports Medicine and Physical Fitness, 41, 33-38.
  • Martin RJF, Dore E, Twisk J, Van Praagh E, Hautier CA, Bedu M. (2004). Longitutudial changes of maximal short-term peak power in girls and boys during growth. Medicine and Science in Sport and Exercise, 36(3), 498- 503.
  • Mayrovitz HN, Sims N, Litwin B, Pfister S. (2005). Foot volume estimates based on a geometric algorithm in comparison to water displacement. Lymphology, 38, 20-27.
  • Mero A. (1988). Force-time characteristic and running velocity of male sprinters during the accelaration phase of sprinting. Research Quaterly for Exercise and Sport, 59-94.
  • Newman MA, Tarpenning KM, Marino FE. (2004).
  • Relationship between isokinetic knee strength, single- sprint performance, and repeated-sprint agility in football players. Journal of Strength and Conditioning Research,18(4),867-72.
  • Özder A, Günay M. (1994). Futbolcuların bazı
  • fizyolojik parametrelerinin oynadıkları mevkilere göre karşılaştırılması. Spor Bilimleri Dergisi, (5)1:21-25.
  • Özkan, A. (2007) Wingate Anaerobik Güç Testinde Optimal Yükün Belirlenmesi. Yayınlanmamış Yüksek Lisans Tezi. Hacettepe Üniversitesi Sağlık Bilimleri Enstitüsü.
  • Özkan A, Sarol H. (2008). Dağcılarda vücut
  • kompozisyonu, bacak hacmi, bacak kütlesi, anaerobik performans ve bacak kuvveti arasındaki ilişki. Spormetre, VI (4), 175-181.
  • Perrin DH. (1993). Isokinetic Exercise and Assessment, Champaign, IL: Human Kinetics.
  • Saavedra C, Lagasse P, Bouchard C, Simoneau J. (1991). Maximal anaerobic performance of the knee extensor muscles during growth. Medicine and Science in Sport and Exercise, 23(9), 1083-1089.
  • Staron RS, Hagerman FC, Hikida RS, Murray TF, Hostler DP, Crill MT ve diğ. (2000). Fiber type composition of the vastus lateralis muscle of young men and women. The Journal of Histochemistry and Cytochemistry, 48(5), 623-629.
  • Şimşek B, Ertan H, Göktepe AS, Yazıcıoğlu K. (2007). Bayan voleybolcularda diz kas kuvvetinin sıçrama yüksekliğine etkisi. Egzersiz, 1(1), 36-43.
  • Thorland WG, Johnson GO, Cisar CJ, Housh TJ, Tharp GD. (1987). Strength and anaerobic responses of elite young female sprint and distance runners. Medicine and Science in Sport and Exercise, 19(1), 56-61.
  • Van Praagh E, Felmann N, Bedu M, Falgairette G, Coudert G, Gender J. (1990). Gender difference in the relationship of anaerobic power output to body composition in children. Pediatric Exercise Science,2, 336-348.
  • Welsman JR, Armstrong N, Kirby BJ, Parsons G, Sharpe P. (1997). Exercise performance and magnetic resonance imaging-determined thigh muscle volume in children. European Journal of Applied Physiology, 76, 92-97.
Spor Bilimleri Dergisi-Cover
  • Başlangıç: 1990
  • Yayıncı: Süleyman BULUT
Sayıdaki Diğer Makaleler

ARAŞTIRMACI ÖĞRETMEN VE BEDEN EĞİTİMİNİN GELECEKTE HAYATTA KALIŞI (İNGİLİZCE).

Ashley CASEY, David KIRK

LAKTİK ASİTİN ÖLÇÜMÜNDE KULLANILAN BİR EL ANALİZÖRÜNÜN DEĞERLENDİRİLMESİ: LACTATE SCOUT(+)&apos;İN GÜVENİRLİĞİ VE GEÇERLİĞİ.

Tahir HAZIR, Alper AŞÇI, Alpan CİNEMRE, Caner AÇIKADA

Laktik asitin ölçümünde kullanılan bir el analizörünün değerlendirilmesi:lactate scout(+) güvenirliği ve geçerliği

Alpan CİNEMRE, Alper AŞÇI, Tahir HAZIR, Caner AÇIKADA

The teacher-as-researcher and the future survival of physical education

David KIRK, Ashley CASEY

Sporcularda bacak hacmi,kütlesi,hamstring/quadriceps oranı ile anaerobik performans

Ali ÖZKAN, Ayşe İŞLER KİN

BEDEN EĞİTİMİ VE SAĞLIK: YENİ BİR KÜRESEL GÖRÜŞ BİRLİĞİ.

Christopher R. EDGINTON, Mingkai CHIN, Gıyasettin DEMİRHAN

Sporcularda Bacak Hacmi, Kütlesi, Hamstring/Quadriceps Oranı ile Anaerobik Performans ve İzokinetik Bacak Kuvveti Arasındaki İlişki

Ali ÖZKAN, Ayşe KİNİŞLER

LAKTİK ASİTİN ÖLÇÜMÜNDE KULLANILAN BİR EL ANALİZÖRÜNÜN DEĞERLENDİRİLMESİ: LACTATE SCOUT(+)'İN GÜVENİRLİĞİ VE GEÇERLİĞİ.

Tahir HAZIR, Alper AŞÇI, Alpan CİNEMRE, Caner AÇIKADA

Öğrencilere yönelik yapılandırmacı öğretim yaklaşımı ölçeği:bir geçerlilik ve güvenirlilik çalışması

Bülent AĞBUĞA

ÖĞRENCİLERE YÖNELİK YAPILANDIRMACI ÖĞRETİM YAKLAŞIMI ÖLÇEĞİ: BİR GEÇERLİLİK VE GÜVENİRLİLİK ÇALIŞMASI.

Bülent AĞBUĞA