Farklı spor dallarında Bench press hareketiyle çabuk kuvvet bileşenlerinin analizi

Bu araştırmanın amacı; üst ekstremite kuvvetinin belirlenmesinde kullanılan bench press (BP) hareketinde ölçülen hız, kuvvet, mekanik güç ve doğrusal momentum değişkenlerine ait maksimum değerler açısından spor dalları (atletizm, basketbol, hentbol, voleybol, vücut geliştirme) arası farkları ve dinamik maksimum kuvvet (1TM) ile en yüksek maksimum değerler arası ilişkiyi araştırmaktır. Bu amaçla, 56 erkek sporcu (atlet: n=13; basketbolcu: n=16; hentbolcu: n=16; voleybolcu: n=5 ve vücut geliştirici: n=6) birer dakika ara ile ITM'nin %39.9, %49.9, %59.9, %70.0 ve %80.0'ine karşılık gelen yüklerde istemli en yüksek kasılma hızı ile bir tekrar konsantrik BP hareketi uygulamışlardır. Test sırasında 100 Hz veri toplama hızıyla elde edilen üç boyuta ait yerdeğiştirme verileri bilgisayara kaydedilmiş ve hız (Vmaks), kuvvet (Fmaks) nıskanik güç (Pmaks) ve doğrusal momentum (pmaks) değişkenlerine ilişkin maksimum değerler hesaplanmıştır. Bu çalışmada, artan yüke bağlı olarak incelenen değişkenlere ait maksimum değerler spor dalları arasında istatistiksel olarak anlamlı bir farklılık göstermemiştir. Bununla birlikte, artan yükle birlikte incelenen değişkenlerde yükler arası farklar pmaks hariç, diğer değişkenlerde istatistiksel olarak anlamlı bulunmuştur. Buna ek olarak tüm spor dalları gözönünde bulundurulduğunda, 1TM ile test yükleri içerisinde oluşan en yüksek Fmaks ve Pmaks değişkeni arasında pozitif yönde anlamlı ilişki bulunmuştur (sırasıyla; r=0.39, p

Analysis of speed strength components in different sports by Bench press motion

The purpose of this study was to compare the differences in maximum values of velocity, force, mechanical power and linear momentum variables of bench press motion (BP) which is used to determine the upper body strength, according to the sport branches (track & field, basketball, handball, volleyball, body building) and to determine the relationship between dynamic maximal strength (1RM) and the selected variables. Fiftysix male subjects (track & field athletes: n=13; basketball players: n=16; handball players: n=16; volleyball players: n=5 and body builders: n=6) performed BP with maximum voluntary contraction velocity in loads of 39.9%, 49.9%, 59.9%, 70.0% and 80.0% of 1RM with one minute intervals. During the test, displacement data according to three dimension was recorded in a computer with 100 Hz and the maximum values of velocity (Vmaks), force (Fmaks)- mechanical power (Pmaks) and linear momentum (pmaks) were calculated. In this study, no significant difference was obtained in maximum values of selected variables that were examined according to increased load among sport branches. In addition to that, significant differences were obtained among the loads in the maximum values of all variables, except from Pmaks variable. Finally, when all sport branches were taken into consideration, significant positive correlation were found between 1RM and the highest values of Fmaks and Pmaks variables in the testing loads (respectively; r=0.39, p

___

  • Abdessemed, D. Danche, P. Hautier, C. Pouma-nent, G. & Bedu, M. (1999). Effects of recovery duration on muscular power and blood lactate during the bench press exercise, International Journal of Sports Medicine. 20, 368-373.
  • Abendroth-Smith, J. & Griswold, S. (1998). The effects of grip with on bench press performance using novice lifters. North American Congress on Biomechanics. Ontario: Canada.
  • Almasbakk, B. & Hoff J. (1996). Coordination, the determinant of velocity specificity? Journal of Applied Physiology. 81, 2046-2052
  • Baker, D„ Nance, S. & Moore, M. (2001). The load that maximizes the average mechanical power output during explosive bench press throws in highly trained athletes. Journal of Strength and Conditioning Research. 15(1), 20-24.
  • Ballantayne C. S. & Sale, D. G. (1999). Effect of different rest intervals on fatigue in resistance training. Journal of Strength and Conditioning Research. 13, 422-435.
  • Bartlett, R. (1997). Introduction to Sports Biomechanics. London: Chapmen&Hall.
  • Behm, D.G. & Sale, D.G. (1993). Intended rather then actual movement velocity determines velocity-specific training response. Journal of Applied Physiology. 71, 359-368.
  • Bemben, M. G. & McCalip, G. (1999). Strength and power relationships as a function of age. Journal of Strength and Conditioning Research. 13(4), 330-338.
  • Callaway, W.C., Chumlea, W.C., Bouchard, C. John, H.H., Lohman, T.G., Martin, C.D., Mueller, W.H., Roche, A.F. & Seefeld, W.D. (1988). Circumferences. In T.G. Lohman, A.F. Roche, R. Martorell (Eds) Antropo-metric Standardization Reference Manuel. (pp 39-54) Champaign: Human Kinetics.
  • Cronin, J. B„ McNair, P. J. & Marshall R. N. (2000). The role of maximal strength and load on initial power production. Medicine and Science in Sports and Exercise. 32, 1763-1769.
  • Cronin, J. B„ McNair, P. J. & Marshall R. N. (2003). Force-velocity analysis of strength-training techniques and load: Implications for training strategy and research. Journal of Strength and Conditioning Research. 17(1), 148-155.
  • Hakkinen, K. & Komi, P. V. (1986). Training-induced changes in neuromuscular performance under voluntary and reflex conditions. European Journal of Applied Physiology. 55, 147-155.
  • Harrison, G.G., Buskirk, E.R., Carter, J.E.L. Johnston, F.E., Lohman, T.G., Pollock, M.L., Roche, A.F. & Wilmore, J. (1988). Skinfold Thickness and Measurement Technique. In. T.G. Lohman, A.F. Roche , R. Martorell (Eds) Antropometric Standardization Reference Manuel, (pp 55-70) Champaign: Human Kinetics.
  • Izquierdo, M., Hakkinen, K., Gonzalez-Badillo, J. J., Ibanez, J. & Gorostiaga, E. M. (2002). Effects of long-term training spesificity on maximal strength and power of upper and lower extremities in athletes from different sports. European Journal of Applied Physiology. 87, 264-271.
  • Jones, K. Hunter, G., Fleising, G., Escamilla, R. & Cemale, L. (1999). The effects of compensatory acceleration on upper-body strength and power in collegiate football players. Journal of Strength and Conditioning Research. 13, 99-105.
  • Kaneko, M., Fuchimoto, T., Toji, H. & Suei, K. (1983). Training effect of different loads on the force-velocity relationship and mechanical power output in human muscle. Scandinavian Journal of Sports Science. 5(2), 50-55.
  • Kanehisa, H. & Miyashita, M. (1983). Specificity of velocity in strength training. European Journal of Physiology and Occupational Physiology. 52, 104-106.
  • Madsen, N. & McLaughlin, T. (1984). Kinematic factors influencing performance and injury risk in the bench press exercise. Medicine & Science in Sports and Exercise. 16(4), 376-381.
  • Mayhew, J. L., Wave J. S., Johns, R. A. & Bember M. G. (1997). Changes in upper body power following heavy-resistance strength training in college men. International Journal of Sports Medicine. 18, 516-520.
  • Moss, B.M., Refsnes, P.E., Abildgarrd, A., Nicolay-sen, K. & Jensen, J. (1997). Effects of maximal effort strength training with different loads on dynamic strength, cross-secti-onal area, load-power and load-velocity relatioships. European Journal of Physiology and Occupational Physiology. 75, 193-199.
  • Newton, R. U., Kraemer, W. J., Hakkinen, K. & Murpy, A. J. (1997). Influence of load and stretch-shortening cycle on the kinematics, kinetics and muscle activation that occurs during explosion upper body movements. European Journal of Physiology and Occupational Physiology. 75, 333-342.
  • Pampus, B., Lehnertz, K. & Martin, D. (1989). The effect of different load intensities on the development of maximal strength and strength endurance. Leistungssport. 19(4), 20-27.
  • Powers, S. K. & Howley, E. T. (1990). Exercise Physiology: Theory and Application To Fitness and Performance. Dubuque, Iowa: Wm. C. Brown Publishes.
  • Rahmani, A., Viale, F., Dalleau, G. & Lacour, J. (2001). Force-velocity and power-velocity relationships in squat exercice. European Journal of Applied Physiology. 84, 227-232.
  • Sale, D.G. (1992). Neural Adaptation to Strength Training. In: P.V. Komi (Ed) Strength and Power in Sport. London: Oxford Black-well Scientific Publications.
  • Schmidtbleicher, D. (1992). Training For Power Events. P. V. Komi (Ed), Strength and Power in Sport Boston : Blackwell Scientific Publications, 381-395.
  • Siegel, J. A., Gilders, R. M„ Staron, R. S. & Hagerman, F. C. (2002). Human muscle power output during upper- and lower-body exercises. Journal of Strength and Conditioning Research. 16(2), 173-178.
  • Stone, M.H., O'Bryant, H.S., McCoy, L., Cogliane-se, R., Lehmkuhl, M. & Schilling, B. (2003). Power and maximum strength relationships during performance of dynamic and static weighted jumps. Journal of Strength and Conditioning Research. 17(1), 140-147.
  • Thomas, M., Fiatorone, M.A. & Fielding, R.A. (1996). Leg power in young women: Relationship to body composition, strength, and function. Medicine & Science in Sports and Exercise. 28, 1321-1326.
  • Thompson, C.J. & Bemben, M.G. (1999). Reliability and comparability of the accelerome-ter as a measure of muscular power. Medicine & Science in Sports and Exercise. 31(6), 897-902.
  • Wilson, G.J., Murphy, A.J. & Walshe, A. (1996). The Specificity of strength training: The effects of posture. European Journal of Physiology and Occupational Physiology. 73, 346-352.
  • Wilson, G.J., Newton, R.U., Murphy, A.J. & Humphries, B.J. (1993). The optimal training load for the development of dynamic athletic performance. Medicine & Science in Sports and Exercise. 25, 1275-1286.
  • Zatsiorsky, V. (1995). Science and Practice of Strength Training. Champaign: Human Kinetics.