Çocuklarda cinsel olgunlaşmanın tekrarlı sprint yeteneğine etkisi

Bu araştırma çocuklarda cinsel olgunlaşmanın tekrarlı sprint yeteneğine etkisinin belirlenmesi amacıyla yapılmıştır. Çalışmaya haftada iki gün basketbol antrenmanına katılan 30 ergenliğe girmiş (ort. yaş: 12.5±1.3yıl) ve 28 ergenliğe girmemiş (ort. yaş: 9.7±1.2yıl) erkek çocuk gönüllü olarak katılmıştır. Katılımcıların cinsel olgunlaşma düzeyi kişisel bilgi formuyla, tekrarlı sprint yeteneği ise 30 saniye dinlenme aralıklarıyla uygulanan 12x20m tekrarlı sprint testi ile belirlenmiştir. Tekrarlı 20m sprint testinde 0-10m, 10-20m ve 0-20m mesafeleri için en iyi sprint zamanı, toplam sprint zamanı ve performans düşüş yüzdesi değerleri belirlenmiştir. Bağımsız örneklerde t-testi sonuçları 0-10m (t=- 2.311;p=.025), 10-20m (t=-2.327; p=.024) ve 0-20m (t=-2.141; p=.037) en iyi sprint zamanı değerlerinde ergenliğe girmiş katılımcılar lehine istatistiksel yönden anlamlı bir fark olduğunu göstermiştir. Benzer şekilde toplam sprint zamanı değerlerine bakıldığında 0-10m (t=-2.358;p=.022), 10-20m (t=-2.578; p=.013) ve 0-20m (t=-2.505; p=.015) mesafelerinde Zafeiki grup arasında anlamlı fark belirlenmiş ve bu fark ergenliğe girmiş katılımcıların daha iyi toplam sprint zamanı değerlerinden kaynaklanmıştır. Performans düşüş yüzdesi değerlerinde 0-10m, 10-20m ve 0-20m mesafelerinde iki grup arasında anlamlı bir fark belirlenmemiştir (p>.05). Bu sonuçlar tekrarlı sprint yeteneğinin en iyi ve toplam sprint zamanı açısından cinsel olgunlaşmaya göre farklılaştığını, performans düşüş yüzdesinin başka bir deyişle yorgunluğun cinsel olgunlaşmadan etkilenmediğini göstermektedir.

Effect of pubertal status on repeated sprint ability in children

The purpose of this study was to investigate the effect of pubertal status on repeated sprint ability in children. Fifty-nine boys (28 pre-pubertal (mean age: 9.7±1.2 yrs) and 30 post-pubertal (mean age: 12.5±1.3 yrs)) who were involved in basketball twice a week participated in this study voluntarily. Pubertal status of the subjects was determined by a selfreport questionnaire and repeated sprint ability was determined by a 12×20m running repeated ability test with 30s intervals. After the repeated sprint ability tests subjects’ best sprinting time, total sprinting time and the percentage of performance decrement was calculated for 0-10m, 10-20m and 0-20m. Results of the independent samples t-test indicated significant differences in best sprinting time for 0-10m (t=- 2.462, p=.017), 10-20m (t=-2.427, p=.018) and 0-20m (t=-2.270, p=.027) between pre-pubertal and postpubertal boys. In addition significant differences was observed in total sprinting time for 0-10m (t=-2.502, p=.015), 10-20m (t=-2.665, p=.010) and 0-20m (t=- 2.627, p=.011) between pre-pubertal and post-pubertal boys. In contrast no significant differences was obtained in percentage of performance decrement for any distances between the two pubertal groups (p>.05). It is clear from the results that puberty has a profound effect on repeated sprint ability as post-pubertal boys have better best and total sprinting time. However puberty did not produce any differences in performance decrement indicating that pre-pubertal and post-pubertal boys in the present study were not different in rate of fatigue development

___

  • 1. Altıntaş A, Aşçı FH. (2008). Physical self-esteem of adolescents with regard to physical activity and pubertal status. Pediatric Exercise Science. 20,142-156.
  • 2. Beneke R, Hütler M, Leithauser RM. (2007). Anaerobic performance and metabolism in boys and male adolescents. European Journal of Applied Physiology, 101,671-677.
  • 3. Castagna C, Manzi V, D’Ottavio S. (2007). Relation between maximal aerobic power and the ability to repeat sprints in young basketball players. Journal of Strength and Conditioning Research. 21,1172-1176.
  • 4. Falk B, Dotan R. (2006). Child-adult differences in the recovery from high-intensity exercise. Exercise and Sport Sciences Reviews, 34, 107-112.
  • 5. Frost G, Dowling J, Dyson K, Bar-Or O. (1997). Cocontraction in three age groups of children during treadmill locomotion. Journal of Electromyography and Kinesiology, 7, 179-186.
  • 6. Koşar ŞN, Demirel H. (2004). Çocuk sporcuların fizyolojik özellikleri. Acta Orthopaedica et Traumatologica Turcica, 38 Suppl 1:1-15
  • 7. Malina RM, Bouchards C, Bar-Or, O. (2004). Growth, Maturation and Physical Activity. Champaign, IL: Human Kinetics Publishers.
  • 8. Mero A. (1998) Power and speed training during childhood. (Van Praagh E. Ed.) Pediatric Anaerobic Performance (s.214-267) Champaign, IL: Human Kinetics.
  • 9. Monsma EV, Malina RM, Feltz DL. (2006). Puberty and physical self-perceptions of competitive female figure skaters: An interdisciplinary approach. Research Quarterly Exercise Sport. 77, 158-165.
  • 10. Murdey ID, Cameron N, Biddle SJH, Marshall SJ, Gorely T. (2005). Short-term changes in sedentary behavior during adolescence: Project STIL (Sedentary Teenagers and Inactive Lifestyles). Annals of Human Biology. 32, 283-296.
  • 11. Oliver J, Armstrong N, Craig AW. (2009) Relationship between brief and prolonged repeated sprint ability. Journal of Sport Science and Medicine, 12, 238-243.
  • 12. Papaiakovou G, Giannakos A, Michailidis C, Patikas D, Bassa E, Kalopisis V, ve diğ. (2009). The effect of chronological age and gender on the development of sprint performance during childhood and puberty. Journal of Strength and Conditioning Research, 23, 2568-2573.
  • 13. Petersen SR, Gaul CA, Stanton MM, Hanstock CC. (1999). Skeletal muscle metabolism during short-term, high-intensity exercise in prepubertal and pubertal girls. Journal of Applied Physiology, 87, 2151-2156.
  • 14. Ratel S, BeduM, Hennegrave A, Dore E, Duche P. (2002a) Effect of age and recovery duration on peak power output during repeated cycling sprints. International Journal of Sports Medicine, 23, 397-402.
  • 15. Ratel S, Duche P, Hennegrave E, Van Praagh E, Bedu M. (2002b). Acid-base balance during repeated cycling sprints in boys and men. Journal of Applied Physiology, 92, 479-485.
  • 16. Ratel S, Lazaar N, Williams CA, Bedu M, Duche P. (2003). Age differences in human skeletal muscle fatigue during high-intensity intermittent exercise. Acta Paediatrica, 92, 1248-1254.
  • 17. Ratel S, Williams CA, Oliver J, Armstrong N. (2004). Effects of age and mode of exercise on power output profiles during repeated sprints. European Journal of Applied Physiology, 92, 204-210.
  • 18. Rowland TW. (2005) Children’s Exercise Physiology. Champaing, IL: Human Kinetics Publishers.
  • 19. Saavedra C, lagasse P, Bouchard C, Simoneau JA. (1991). Maximal anaerobic performance of the knee extensor muscles during growth. Medicine and Science in Sports and Exercise. 23, 1083-1089.
  • 20. Stolen T, Chamari K, Castagna C, Wisloff U. (2005). Physiology of Soccer: An update. Sports Medicine, 35, 501-536.
  • 21. Taylor DJ, Kemp GJ, Thompson CH, Radda GK. (1997). Ageing: effects on oxidative function of skeletal muscle in vivo. Molecular and Cellular Biochemistry, 174, 321-324.
  • 22. Van Praagh E, Dore E. (2002). Short-term muscle power during growth and maturation. Sports Medicine, 32, 701-728.
  • 23. Wadley G, Le Rossignol P. (1998). The relationship between repeated sprint ability and the aerobic and anaerobic energy systems. Journal of Science and Medicine in Sport. 1, 100-110.
  • 24. Zafeiridis A, Dalamitros A, Dipla K, Manou V, Galanis N, Kellis S. (2005) Recovery during high-intensity intermittent anaerobic exercise in boys, teens and men. Medicine and Science in Sports and Exercise, 37, 505-512.