Platform Üzerinde Uygulanan Denge Testi Esnasında Kalp Atım Hızı Değişkenliğinin Non-Invazif Değerlendirilmesi

Denge sağlamaya çalışılırken, sinir-kas aktivitesi artar. Artan sinir-kas aktivitesi kalp atım hızı değişkenliği parametrelerinde değişikliklere neden olur. Kalp atım hızı değişkenliği ölçümünde genel olarak 5 dakika ve üzerinde kayıtlar alınmaktadır. Fakat son yıllarda özellikle fiziksel kapasite ölçümünde 5 dakikadan 10 saniyeye kadar ultra kısa süreli kalp atım hızı değişkenliği ölçümleri de yapılmaktadır. Bu çalışmanın amacı dinamik denge testi öncesi, sırası ve sonrasında, denge test platformunda belirlenen merkezde kalma süresine göre oluşturulan gruplar arasında kalp atım hızı değişkenliği değerlerinin karşılaştırılmasıdır. Çalışmaya 63 sağlıklı erkek (yaş=25.8±3.3 yıl; boy uzunluğu=176.6±5.5; vücut ağırlığı=77.6±8.0) katılımcı olarak alınmıştır. Kalp atım hızı değişkenliği test öncesinde 60 saniye boyunca kaydedilmiştir. Daha sonra katılımcılar ayakkabısız olarak denge platformuna çıkartılmıştır. Kalp atım hızı değişkenliği bu sırada 60 saniye ve test bitiminde 60 saniye olarak kaydedilmiştir. Denge testi sonunda denge cihazının test prosedürüne göre A, B, C, D bölgelerinden en fazla A bölgesinde yani merkez noktasına en yakın bölgede kalabilenler 1. grup (n=38), diğerleri 2. grup (n=25) olarak gruplandırılmıştır. Çalışma sonucunda normalize edilmiş düşük frekans ve normalize edilmiş yüksek frekans için kalp atım hızı değişkenliği değişiklikleri açısından gruplar arası anlamlı farklılık bulunmuştur (p<0.05). Sonuçta çalışmamızda denge becerisi daha iyi olan katılımcıların kalp atım hızı değişkenliği değerlerinin daha yüksek olduğu sonucuna varılmıştır. Kalp atım hızı değişkenliğinin yorgunluğun da bir göstergesi olduğu düşünüldüğünde, denge becerilerini geliştirmeye yönelik egzersizlerin uygulanmasının sporcuların otonom sinir sistemine katkı sağlayacağını söyleyebiliriz.

Non-Invasive Evaluation of Heart Rate Variability During Platform Balance Test

Neuromuscular activity also increases as we try to maintain our balance. Neuromuscular activity also causes changes in heart-rate-variability parameters. In the measurement of heart-rate-variability, recordings are generally taken for 5-minutes or longer. However, in recent years, ultra-short-term heart-rate-variability measurements from 5-minutes to 10-seconds have been made, especially in physical capacity measurement. The aim of the present study is to compare the heart-rate-variability parameters between the groups formed according to the performance before, during and, after the dynamic balance test. The sixty-three healthy males were recruited (age=25.8±3.3 years; height=176.6±5.5; weight=77.6±8.0) participated voluntarily. Heart-rate-variability was recorded for 60-seconds prior to testing. Afterwards, the participants were taken to the platform without shoes.Heart-rate-variability was recorded for 60-seconds at this time and 60-seconds at the end of the test. At the end of the balance test, according to the test procedure of the balance device, those who could stay in the A, B, C, D regions the most, that is, in the region closest to the center point, were grouped as the 1st group (n=38) and the others as the 2nd group (n=25). As a result of the study, a statistically significant difference was found between the groups in terms of heart rate variability changes for normalized low-frequency and normalized high-frequency significant differences were found between which groups (p<0.05). As a result, it was concluded in our study that participants with better balance skills had higher heart-rate-variability values. Considering that heart rate variability is also an indicator of fatigue, we can say that the implementation of exercises aimed at improving balance skills will contribute to the autonomic nervous system of the athletes.

___

  • Baek, H. J., Cho, C.-H., Cho, J., & Woo, J.-M. (2015). Reliability of ultra-short-term analysis as a surrogate of standard 5-min analysis of heart rate variability. Telemedicine and E-Health, 21(5), 404–414. https://doi.org/10.1089/tmj.2014.0104
  • Berntson, G. G., Thomas Bigger Jr, J., Eckberg, D. L., Grossman, P., Kaufmann, P. G., Malik, M., Nagaraja, H. N., Porges, S. W., Saul, J. P., & Stone, P. H. (1997). Heart rate variability: origins, methods, and interpretive caveats. Psychophysiology, 34(6), 623–648. https://doi.org/10.1111/j.1469-8986.1997.tb02140.x
  • Billman, G. E. (2011). Heart rate variability - a historical perspective. Frontiers in Physiology, 2. Article 86. https://doi.org/10.3389/FPHYS.2011.00086
  • Billman, G. E. (2013). The LF/HF ratio does not accurately measure cardiac sympatho-vagal balance. Frontiers in Physiology, 4. Article 26. https://doi.org/10.3389/fphys.2013.00026
  • Biswas, S. (2020). A Study on resting heart rate and heart rate variability of athletes, non-athletes and cricketers. American Journal of Sports Science, 8(4), 95-98. https://doi.org/10.11648/J.AJSS.20200804.13
  • Buchheit, M., Chivot, A., Parouty, J., Mercier, D., Al Haddad, H., Laursen, P. B., & Ahmaidi, S. (2010). Monitoring endurance running performance using cardiac parasympathetic function. European Journal of Applied Physiology, 108(6), 1153–1167. https://doi.org/10.1007/s00421-009-1317-x
  • Chalencon, S., Busso, T., Lacour, J.-R., Garet, M., Pichot, V., Connes, P., Gabel, C. P., Roche, F., & Barthélémy, J. C. (2012). A model for the training effects in swimming demonstrates a strong relationship between parasympathetic activity, performance and index of fatigue. PloS One, 7(12), e52636. https://doi.org/10.1371/journal.pone.0052636
  • Choi, J. S., Kim, H. S., Mun, K. R., Kang, D. W., Kang, M. S., Bang, Y. H., Oh, H. S., Yi, J. H., Lim, Y. T., & Tack, G. R. (2010). Differences in kinematics and heart rate variability between winner and loser of various skilled levels during competitive golf putting tournament. British Journal of Sports Medicine, 44(14), i25–i25. https://doi.org/10.1136/bjsm.2010.078972.76
  • Dixon, E. M., Kamath, M. V, McCartney, N., & Fallen, E. L. (1992). Neural regulation of heart rate variability in endurance athletes and sedentary controls. Cardiovascular Research, 26(7), 713–719.
  • Esco, M. R., Williford, H. N., Flatt, A. A., Freeborn, T. J., & Nakamura, F. Y. (2018). Ultra-shortened time-domain HRV parameters at rest and following exercise in athletes: an alternative to frequency computation of sympathovagal balance. European Journal of Applied Physiology, 118(1), 175–184. https://doi.org/10.1007/s00421-017-3759-x
  • Espinoza-Valdés, Y., Córdova-Arellano, R., Espinoza-Espinoza, M., Méndez-Alfaro, D., Bustamante-Aguirre, J. P., Maureira-Pareja, H. A., & Zamunér, A. R. (2021). Association between Cardiac Autonomic Control and Postural Control in Patients with Parkinson’s Disease. International Journal of Environmental Research and Public Health, 18(1), Article 249. https://doi.org/10.3390/ijerph18010249
  • Giles, D. A., & Draper, N. (2018). Heart rate variability during exercise: A comparison of artefact correction methods. The Journal of Strength & Conditioning Research, 32(3), 726–735. https://doi.org/10.1519/JSC.0000000000001800
  • Giles, D., Draper, N., & Neil, W. (2016). Validity of the Polar V800 heart rate monitor to measure RR intervals at rest. European Journal of Applied Physiology, 116(3), 563–571. https://doi.org/10.1007/s00421-015-3303-9
  • Hammami, A., Kasmi, S., Razgallah, M., Tabka, Z., Shephard, R. J., & Bouhlel, E. (2017). Recreational soccer training improves heart-rate variability indices and physical performance in untrained healthy adolescent. Sport Sciences for Health, 13(3), 507–514. https://doi.org/10.1007/S11332-016-0343-4/METRICS
  • Herd, J. A. (1991). Cardiovascular response to stress. Physiological Reviews, 71(1), 305–330. https://doi.org/10.1152/physrev.1991.71.1.305
  • Horak, F. B. (2006). Postural orientation and equilibrium: what do we need to know about neural control of balance to prevent falls? Age and Ageing, 35(suppl_2), ii7–ii11. https://doi.org/10.1093/ageing/afl077
  • Hrysomallis, C. (2011). Balance ability and athletic performance. Sports Medicine, 41(3), 221–232). Springer. https://doi.org/10.2165/11538560-000000000-00000
  • Iellamo, F., Legramante, J. M., Raimondi, G., Castrucci, F., Damiani, C., Foti, C., Peruzzi, G., & Caruso, I. (1997). Effects of isokinetic, isotonic and isometric submaximal exercise on heart rate and blood pressure. European Journal of Applied Physiology and Occupational Physiology, 75(2), 89–96. https://doi.org/10.1007/s004210050131
  • Janssen, M. J. A., de Bie, J., Swenne, C. A., & Oudhof, J. (2004). Supine and standing sympathovagal balance in athletes and controls. European Journal of Applied Physiology and Occupational Physiology, 67(2), 164–167. https://doi.org/10.1007/BF00376661
  • Kang, J. H., & Hyong, I. H. (2014). The influence of neuromuscular electrical stimulation on the heart rate variability in healthy subjects. Journal of Physical Therapy Science, 26(5), 633–635. https://doi.org/10.1589/jpts.26.633
  • Kayacan, Y., Makaracı, Y., Ucar, C., Amonette, W. E., & Yıldız, S. (2023). Heart rate variability and cortisol levels before and after a brief anaerobic exercise in handball players. Journal of Strength and Conditioning Research, 37(7), 1479–1485. https://doi.org/10.1519/JSC.0000000000004411
  • Kiviniemi, A. M., Hautala, A. J., Kinnunen, H., & Tulppo, M. P. (2007). Endurance training guided individually by daily heart rate variability measurements. European Journal of Applied Physiology, 101(6), 743–751. https://doi.org/10.1007/s00421-007-0552-2
  • Kneis, S., Wehrle, A., Freyler, K., Lehmann, K., Rudolphi, B., Hildenbrand, B., Bartsch, H. H., Bertz, H., Gollhofer, A., & Ritzmann, R. (2016). Balance impairments and neuromuscular changes in breast cancer patients with chemotherapy-induced peripheral neuropathy. Clinical Neurophysiology, 127(2), 1481–1490. https://doi.org/10.1016/j.clinph.2015.07.022
  • Maheshkumar, K., Loganathan, S., & Choudhary, A. (2017). Assessment of the cardio-autonomic status by short-term heart rate variability in young football players. International Journal of Health & Allied Sciences, 6(3), 133. https://doi.org/10.4103/IJHAS.IJHAS_48_16
  • Maior, A. S., Menezes, P., Fleck, S., Bunker, T., Rhea, M., Leite, R. D., & Simão, R. (2015). Autonomic cardiac and cardiorespiratory responses in volleyball athletes compared to recreationally trained individuals. Medicina (Brazil), 48(6), 589–597. https://doi.org/10.11606/ISSN.2176-7262.V48I6P589-597
  • Makivić, B., Nikić Djordjević, M., & Willis, M. S. (2013). Heart Rate Variability (HRV) as a tool for diagnostic and monitoring performance in sport and physical activities. Journal of Exercise Physiology Online, 16(3), 103–131.
  • Malliani, A., Pagani, M., Lombardi, F., & Cerutti, S. (1991). Cardiovascular neural regulation explored in the frequency domain. Circulation, 84(2), 482–492. https://doi.org/10.1161/01.CIR.84.2.482
  • Manzi, V., Castagna, C., Padua, E., Lombardo, M., D’Ottavio, S., Massaro, M., Volterrani, M., & Iellamo, F. (2009). Dose-response relationship of autonomic nervous system responses to individualized training impulse in marathon runners. American Journal of Physiology-Heart and Circulatory Physiology, 296(6), H1733–H1740. https://doi.org/10.1152/ajpheart.00054.2009
  • Malik, M. (1996). Heart rate variability: Standards of measurement, physiological interpretation, and clinical use. Circulation, 93,1043-1065. https://doi.org/10.1111/j.1542-474X.1996.tb00275.x
  • Middleton, N., & De Vito, G. (2005). Cardiovascular autonomic control in endurance‐trained and sedentary young women. Clinical Physiology and Functional Imaging, 25(2), 83–89. https://doi.org/10.1111/J.1475-097X.2004.00594.X
  • Mosley, E., & Laborde, S. (2015). Performing with all my heart: heart rate variability and its relationship with personality-trait-like-individual-differences (PTLIDs) in pressurized performance situations. In Heart Rate Variability (HRV): Prognostic Significance, Risk Factors and Clinical Applications, (pp.45–60). Nova Science Publishers, Inc.
  • Nakamura, F. Y., Flatt, A. A., Pereira, L. A., Ramirez-Campillo, R., Loturco, I., & Esco, M. R. (2015). Ultra-short-term heart rate variability is sensitive to training effects in team sports players. Journal of Sports Science & Medicine, 14(3), 602–605.
  • Nashner, L. M. (2014). Practical biomechanics and physiology of balance. In G.P. Jacobson, N.T. Shepard, K. Barin, R.F. Burkard, K. Janky, D.L. McCaslin (Edt.) Balance Function Assessment and Management. Plural Publishing
  • Nussinovitch, U., Elishkevitz, K. P., Katz, K., Nussinovitch, M., Segev, S., Volovitz, B., & Nussinovitch, N. (2011). Reliability of ultra‐short ECG indices for heart rate variability. Annals of Noninvasive Electrocardiology, 16(2), 117–122. https://doi.org/10.1111/j.1542-474X.2011.00417.x
  • Oyeyemi, A., Ewah, P. A., & Oyeyemi, A. (2015). Comparison of recovery cardiovascular responses of young physically active and sedentary Nigerian undergraduates following exercise testing. International Journal of Physical Education, Sports and Health, 2(2), 60-65
  • Pagani, M., Lombardi, F., Guzzetti, S., Rimoldi, O., Furlan, R., Pizzinelli, P., Sandrone, G., Malfatto, G., Dell’Orto, S., & Piccaluga, E. (1986). Power spectral analysis of heart rate and arterial pressure variabilities as a marker of sympatho-vagal interaction in man and conscious dog. Circulation Research, 59(2), 178–193. https://doi.org/10.1161/01.RES.59.2.178
  • Plews, D. J., Laursen, P. B., Kilding, A. E., & Buchheit, M. (2012). Heart rate variability in elite triathletes, is variation in variability the key to effective training? A case comparison. European Journal of Applied Physiology, 112(11), 3729–3741. https://doi.org/10.1007/s00421-012-2354-4
  • Pollock, A. S., Durward, B. R., Rowe, P. J., & Paul, J. P. (2000). What is balance? Clinical Rehabilitation, 14(4), 402–406. https://doi.org/10.1191/0269215500CR342OA
  • Robé, C., Daehre, K., Merle, R., Friese, A., Guenther, S., & Roesler, U. (2021). Impact of different management measures on the colonization of broiler chickens with ESBL-and pAmpC-producing Escherichia coli in an experimental seeder-bird model. PLoS One, 16(1), e0245224. https://doi.org/10.1371/journal.pone.0245224
  • Saboul, D., Pialoux, V., & Hautier, C. (2014). The breathing effect of the LF/HF ratio in the heart rate variability measurements of athletes. Eur J Sport Sci., 14(Supp.1), 282-288. https://doi.org/10.1080/17461391.2012.691116
  • Sacha, J., & Pluta, W. (2008). Alterations of an average heart rate change heart rate variability due to mathematical reasons. International Journal of Cardiology, 128(3), 444–447. https://doi.org/10.1016/J.IJCARD.2007.06.047
  • Scalise, F., Margonato, D., Frigerio, A., Zappa, R., Romano, R., & Beretta, E. (2021). Heart rate variability, postural sway and electrodermal activity in competitive golf putting. The Journal of Sports Medicine and Physical Fitness, 61(7), 1027–1032. https://doi.org/10.23736/s0022-4707.20.11518-4
  • Seiler, S., Haugen, O., & Kuffel, E. (2007). Autonomic recovery after exercise in trained athletes: intensity and duration effects. Medicine & Science in Sports & Exercise, 39(8), 1366–1373. https://doi.org/10.1249/mss.0b013e318060f17d
  • Shaffer, F., & Ginsberg, J. P. (2017). An overview of heart rate variability metrics and norms. Frontiers in Public Health, 5, Article 258. https://doi.org/10.3389/fpubh.2017.00258
  • Sharma, D., Paudel, B. H., Khadka, R., Thakur, D., Sapkota, N. K., Shah, D. K., Deo, S., & Islam, M. N. (2015). Time domain and frequency domain analysis of heart rate variability in elite Nepalese football players. International Journal of Biomedical Research, 6(9), Article 641. https://doi.org/10.7439/IJBR.V6I9.2413
  • Tarvainen, M. P., Niskanen, J.-P., Lipponen, J. A., Ranta-Aho, P. O., & Karjalainen, P. A. (2014). Kubios HRV–heart rate variability analysis software. Computer Methods and Programs in Biomedicine, 113(1), 210–220. https://doi.org/10.1016/j.cmpb.2013.07.024
  • Taube, W., Gruber, M., Beck, S., Faist, M., Gollhofer, A., & Schubert, M. (2007). Cortical and spinal adaptations induced by balance training: correlation between stance stability and corticospinal activation. Acta Physiologica, 189(4), 347–358.
  • Zech, A., Hübscher, M., Vogt, L., Banzer, W., Hänsel, F., & Pfeifer, K. (2010). Balance training for neuromuscular control and performance enhancement: a systematic review. Journal of Athletic Training, 45(4), 392–403.
Spor Bilimleri Araştırmaları Dergisi-Cover
  • ISSN: 2548-0723
  • Yayın Aralığı: Yılda 3 Sayı
  • Başlangıç: 2016
  • Yayıncı: Kadir YILDIZ
Sayıdaki Diğer Makaleler

Genç Cimnastikçilerde Arı Ürünlerinin Egzersiz Performansına ve Kan Kimyası Özelliklerine Etkisi

Nazmi SARITAŞ, Meltem SOYLU, Hakan AKDOĞAN, Sibel SİLİCİ

Spor Bilimleri Öğrencilerinin Kariyer Kararları ile Akademik Güdülenmeleri Arasındaki İlişki

Sultan UYGUN, Özden TEPEKÖYLÜ ÖZTÜRK

Gençlik Spor Bakanlığının Kurumsal İmajının İşe Başvurma Niyetine Etkisinde Kişi-İş Uyumunun Aracı Rolü

Mustafa Ertan TABUK

Mücadele Sporu Sporcularının Saldırganlık Düzeylerinin İncelenmesi

Ümid KARLI, Nuh Osman YILDIZ, Ünal KARLI, Hanifi ÜZÜM

Ortaokul Öğrencilerinin Dijital Oyun Bağımlılığı, Akran Zorbalığı ve Sportmenlik Davranışları Arasındaki İlişkinin İncelenmesi

Büşra ÇAKIR, Zekihan HAZAR

Elit Milli Karatecilerin Kişisel ve Sosyal Spor Kimliklerinin Öz-Kimlik Grafiği Aracılığıyla İncelenmesi

İsmail SANBERK, Cenab TÜRKERİ, Burhan PARSAK

2020-2021 Futbol Sezonunda 3 Farklı Avrupa Liginde Atılan Gollerin Teknik Analizinin Yapılarak İncelenmesi

Erhan IŞIKDEMİR, Süleyman ÖZKÜRKÇÜ, Sevket Cihat ÖZER

Sanaldan Doğaya Açılan Kapı: Kampçılık Sanal Toplulukları Üzerine Netnografik Bir Çalışma

Gözde YETİM

İleri Yaş Erkeklerde 8 Haftalık Yürüyüş Futbolu Etkinliğinin Yaşam Doyumu ve Kalp Atım Hızı Değişkenliği Üzerine Etkisinin İncelenmesi

Ülküm ERDOĞAN YÜCE, Özcan SAYGIN

Physical Activity in Turkish Esports Players: Age Differences Approach

Egemen MANCI, Erkan GÜNAY