Kan Tahlili Sonuçlarına Göre Diskriminant Analizi ve Yapay Sinir Ağları ile Covid-19 Teşhisinin Belirlenmesi
31 Aralık 2019’da tipi bilinmeyen 27 zatürre vakası Çin’in Hubei eyaleti, Wuhan şehrinde tespit edilmiştir. 30 Ocak 2020’de WHO, Çin’deki COVID-19 salgınını, savunmasız sağlık sistemlerine sahip ülkeler için yüksek risk oluşturan Uluslararası Öneme Sahip Halk Sağlığı Acil Durumu olarak ilan etmiştir. COVID-19 hastalığının teşhisinden üst solunum yollarından ve alt solunum yollarından alınan örnekler kullanılmaktadır. Bu çalışmada RT-PCR testine alternatif olabilecek bir yöntem sunabilmek, RT-PCR testinin %60 doğru teşhis oranından daha güvenilir bir teşhis yöntemi oluşturmak ve üst solunum yollarından süprüntü örneği almadan sadece kan tahlili ile COVID-19’un teşhis edip edilemeyeceğinin tespit edilmesi amaçlanmıştır. Çalışmada São Paulo, Brezilya’daki Israelita Albert Einstein Hastanesinde RT-PCR testi yaptırmış 159 hastanın Hemotokrit, Hemoglobin, Ortalama Trombosit Hacmi, Kırmızı Kan Hücresi Sayısı ve RT-PCR testi sonuçlarından yararlanılmıştır. Hastaların COVID-19 teşhisinde diskriminant analizi ve yapay sinir ağları modelleri kullanılmıştır. Çalışmanın sonucunda diskriminant analizi %89,9, yapay sinir ağları ise %93,7 oranında başarılı olmuşlardır. Yapay sinir ağları ile oluşturulan modelin pozitif hastaları tahmin etmede diskriminant analizine göre daha başarılı olduğu tespit edilmiştir.
Determination of COVID-19 Diagnosis with Discriminant Analysis and Artificial Neural Networks According to Blood Test Results
On December 31, 2019, 27 pneumonia cases of unknown type were detected in China's Wuhan city, Hubei province. On January 30, 2020, World Health Organization (WHO) declared the Coronavirus Disease (COVID)-19 outbreak in China as a Public Health Emergency of International Concern, posing a high risk for countries with vulnerable health systems. Samples taken from the upper respiratory tract and lower respiratory tract are used in the diagnosis of COVID-19. In this study, it was aimed to provide a method that could be an alternative to Reverse Transcription-Polymerase Chain Reaction RT-PCR test, to create a more reliable diagnostic method than the 60% accurate diagnosis rate of RT-PCR test, and to determine whether COVID-19 could be diagnosed by only blood analysis without taking a swab sample from the upper respiratory tract. Hematocrit, hemoglobin, mean platelet volume, red blood cell count and RT-PCR test results of 159 patients who had RT-PCR test at Hospital Sírio-Libanês in São Paulo, Brazil were used in the study. Discriminant analysis and artificial neural network models were used in the diagnosis of COVID-19 of the patients. As a result of the study, discriminant analysis was 89.9% successful, and artificial neural networks were 93.7% successful. According to this result, it was determined that the model created with artificial neural networks is more successful than discriminant analysis in predicting positive patients.
___
- Alpar, R. (2017). Uygulamalı çok değişkenli istatistiksel yöntemler. Detay Yayıncılık.
- Brauner, N., & Shacham, M. (1999). Regression diagnostic using an orthogonalized variables based stepwise regression procedure. Computers & Chemical Engineering, 23, S327-S330. https://doi.org/10.1016/S0098-1354(99)80080-5
- Chen, N., Zhou, M., Dong, X., Qu, J., Gong, F., Han, Y., Qiu, Y., Wang, J., Liu, Y., Wei, Y., Xia, J., Yu, T., Zhang, X., & Zhang, L. (2020). Epidemiological and clinical characteristics of 99 cases of 2019 novel coronavirus pneumonia in Wuhan, China: A descriptive study. The Lancet, 395(10223), 507-513. https://doi.org/10.1016/S0140-6736(20)30211-7
- Cheng, B., & Titterington, D. M. (1994). Neural Networks: A Review from a Statistical Perspective. Statistical Science, 9(1), 2-30. https://doi.org/10.1214/ss/1177010638
- Cilimkovic, M. (2010). Neural Networks and Back Propagation Algorithm.
- Elmas, Ç. (2011). Yapay zeka uygulamaları: (Yapay sinir ağı, bulanık mantık, genetik algoritma). Seçkin Yayıncılık.
- Fraley, C., & Raftery, A. E. (2002). Model-Based Clustering, Discriminant Analysis, and Density Estimation. Journal of the American Statistical Association, 97(458), 611-631. https://doi.org/10.1198/016214502760047131
- Gholamy, A., Kreinovich, V., & Kosheleva, O. (2018). Why 70/30 or 80/20 relation between training and testing sets: A pedagogical explanation.
- Hazarika, A., Dutta, L., Barthakur, M., & Bhuyan, M. (2019). A Multiview Discriminant Feature Fusion-Based Nonlinear Process Assessment and Diagnosis: Application to Medical Diagnosis. IEEE Transactions on Instrumentation and Measurement, 68(7), 2498-2506. https://doi.org/10.1109/TIM.2018.2866744
- Heydari, S. T., Ayatollahi, S. M. T., & Zare, N. (2012). Comparison of Artificial Neural Networks with Logistic Regression for Detection of Obesity. Journal of Medical Systems, 36(4), 2449-2454. https://doi.org/10.1007/s10916-011-9711-4
- Hornik, K., Stinchcombe, M., & White, H. (1989). Multilayer feedforward networks are universal approximators. Neural Networks, 2(5), 359-366. https://doi.org/10.1016/0893-6080(89)90020-8
- Huang, C., Wang, Y., Li, X., Ren, L., Zhao, J., Hu, Y., Zhang, L., Fan, G., Xu, J., Gu, X., Cheng, Z., Yu, T., Xia, J., Wei, Y., Wu, W., Xie, X., Yin, W., Li, H., Liu, M., … Cao, B. (2020). Clinical features of patients infected with 2019 novel coronavirus in Wuhan, China. The Lancet, 395(10223), 497-506. https://doi.org/10.1016/S0140-6736(20)30183-5
- Kujawski, S. A., Wong, K. K., Collins, J. P., Epstein, L., Killerby, M. E., Midgley, C. M., Abedi, G. R., Ahmed, N. S., Almendares, O., Alvarez, F. N., & others. (2020). Clinical and virologic characteristics of the first 12 patients with coronavirus disease 2019 (COVID-19) in the United States. Nature Medicine.
- Larose, D. T. (2005). Discovering knowledge in data: An introduction to data mining. Wiley-Interscience.
- Lau, M. M., & Hann Lim, K. (2018). Review of Adaptive Activation Function in Deep Neural Network. 2018 IEEE-EMBS Conference on Biomedical Engineering and Sciences (IECBES), 686-690. https://doi.org/10.1109/IECBES.2018.8626714
- Li, Z., Dong, A., & Zhou, J. (2020). Research of Low-Rank Representation and Discriminant Correlation Analysis for Alzheimer’s Disease Diagnosis. Computational and Mathematical Methods in Medicine, 2020, 1-8. https://doi.org/10.1155/2020/5294840
- Lu, H., Stratton, C. W., & Tang, Y. (2020). Outbreak of pneumonia of unknown etiology in Wuhan, China: The mystery and the miracle. Journal of Medical Virology, 92(4), 401-402. https://doi.org/10.1002/jmv.25678
- McLachlan, G. J. (1992). Discriminant Analysis and Statistical Pattern Recognition: McLachlan/Discriminant Analysis & Pattern Recog. John Wiley & Sons, Inc. https://doi.org/10.1002/0471725293
- Organization, W. H. (2020). Novel Coronavirus (2019-nCoV): Situation report, 12 (s. 7 p.) [Technical documents]. World Health Organization.
- Otağ, İ., & Çimen, M. (2003). Femurdan morfometrik yöntemlerle cinsiyet tayini. Cumhuriyet Üniv. Tıp Fak. Derg, 25(4), 165-170. http://ezproxy.ticaret.edu.tr:2071/login.aspx?direct=true&db=uvt&AN=20516&site=ehost-live
- Ozkan, I. A., Koklu, M., & Sert, I. U. (2018). Diagnosis of urinary tract infection based on artificial intelligence methods. Computer Methods and Programs in Biomedicine, 166, 51-59. https://doi.org/10.1016/j.cmpb.2018.10.007
- Özdamar, K. (2013). Paket programlar ile istatiksel veri analizi: MINITAB 16 - IBM SPSS 21. Nisan Kitabevi.
- Ripley, B. D. (1996). Pattern Recognition and Neural Networks (1. bs). Cambridge University Press. https://doi.org/10.1017/CBO9780511812651
- Sharma, S. (2019). Activation Functions in Neural Networks. İçinde Medium. Towards Data Science. https://towardsdatascience.com/activation-functions-neural-networks-1cbd9f8d91d6
- Simpson, P. K. (1990). Artificial neural systems: Foundations, paradigms, applications, and implementations (1st ed). Pergamon Press.
- Sohrabi, C., Alsafi, Z., O’Neill, N., Khan, M., Kerwan, A., Al-Jabir, A., Iosifidis, C., & Agha, R. (2020). World Health Organization declares global emergency: A review of the 2019 novel coronavirus (COVID-19). International Journal of Surgery, 76, 71-76. https://doi.org/10.1016/j.ijsu.2020.02.034
- Sutradhar, R., & Barbera, L. (2020). Comparing an Artificial Neural Network to Logistic Regression for Predicting ED Visit Risk Among Patients With Cancer: A Population-Based Cohort Study. Journal of Pain and Symptom Management, 60(1), 1-9. https://doi.org/10.1016/j.jpainsymman.2020.02.010
- Şen, B., Peker, M., Çavuşoğlu, A., & Çelebi, F. V. (2014). A Comparative Study on Classification of Sleep Stage Based on EEG Signals Using Feature Selection and Classification Algorithms. Journal of Medical Systems, 38(3), 18. https://doi.org/10.1007/s10916-014-0018-0
- Tabachnick, B. G., & Fidell, L. S. (2013). Using multivariate statistics (6th ed). Pearson Education.
Tan, R. (2020). COVID-19 Diagnostics Explained. Asian Scientist. https://www.asianscientist.com/2020/04/features/covid-19-diagnostics-explained/
- Walczak, S., & Velanovich, V. (2018). Improving prognosis and reducing decision regret for pancreatic cancer treatment using artificial neural networks. Decision Support Systems, 106, 110-118. https://doi.org/10.1016/j.dss.2017.12.007
- World Health Organization. (t.y.). WHO Director-General’s remarks at the media briefing on 2019-nCoV on 11 February 2020. https://www.who.int/dg/speeches/detail/who-director-general-s-remarks-at-the-media-briefing-on-2019-ncov-on-11-february-2020
- Xia, J., Tong, J., Liu, M., Shen, Y., & Guo, D. (2020). Evaluation of coronavirus in tears and conjunctival secretions of patients with SARS-CoV-2 infection. Journal of medical virology, 92(6), 589-594.
- Yang, J.-G., Kim, J.-K., Kang, U.-G., & Lee, Y.-H. (2014). Coronary heart disease optimization system on adaptive-network-based fuzzy inference system and linear discriminant analysis (ANFIS–LDA). Personal and Ubiquitous Computing, 18(6), 1351-1362. https://doi.org/10.1007/s00779-013-0737-0
- Zhu, N., Zhang, D., Wang, W., Li, X., Yang, B., Song, J., Zhao, X., Huang, B., Shi, W., Lu, R., Niu, P., Zhan, F., Ma, X., Wang, D., Xu, W., Wu, G., Gao, G. F., & Tan, W. (2020). A Novel Coronavirus from Patients with Pneumonia in China, 2019. New England Journal of Medicine, 382(8), 727-733. https://doi.org/10.1056/NEJMoa2001017