SİMETRİK VE FARKLI ORYANTASYON AÇILARINA SAHİP TABAKALI KOMPOZİT KİRİŞLERİN DİNAMİK ANALİZİ

Bu çalışmada, simetrik ve farklı oryantasyon açılarına sahip iki tabakalı kompozit kirişlerin dinamik analizi numerik olarak incelenmiştir. İlk kısımda gerçek boyutlara sahip tabakalı kirişin sonlu elemanlar metodu ile analitik çözümü yapılmıştır. Analitik çözümde kiriş Euler-Bernoulli kiriş teorisi kirişi kabul edilmiştir. İkinci kısımda ise sistem sönümsüz serbest titreşime maruz bırakılarak dinamik analizi yapılmıştır. Sistemin numerik analizi için matematik analiz programı olan MATLAB program dili kullanılmıştır. İki tabakalı çeşitli sınır şartlarına sahip kirişlerin; farklı açılarda ve uzunluk-kalınlık oranlarında doğal frekansları elde edilmiştir. Tabakalı kompozit kirişlerde büyük genlikli titreşimler oldukça etkilidir. Bu sebeple frekanslar ilk sekiz mod için tablo haline getirilip yorumlanmıştır.

Dynamıc Analysıs Of Layered Composıte Beams Wıth Symmetrıc And Dıfferent Orıentatıon Angles

In this study, the dynamic analysis of two-layer composite beams with symmetrıc and dıfferent orıentatıon angles was analyzed analytically and numerically. In the first part, the analytical solution of the layered beam with real dimensions has been made using the finite element method. In the analytical solution, the beam is accepted based on the Euler-Bernoulli beam theory. In the second part, Natural frequencies of two-layered which have various boundary conditions layered beams were obtained at different angles and length-thickness ratios using the MATLAB program language, which is a mathematical analysis program. Large amplitude vibrations are quite effective in laminated composite beams. For this reason, the frequencies were tabulated and interpreted for the first eight modes.

___

  • Abreu, G.L.C.M.; Riberio, J.F.; Steffen, V. 2004, “Finite element modeling of a plate with localized piezoelectric sensors and actuators”, Journal of the Braz. Soc. Of Mech. Sci, vol. 26 (2), pp. 117- 128.
  • Alimirzaei S., Mohammadimehr M., Abdelouahed T. 2020, “Nonlinear analysis of viscoelastic micro- composite beam with geometrical imperfection using FEM: MSGT electro-magneto-elastic bending, buckling and vibration solutions”, Structural Engineering and Mechanics, Vol. 71, No. 5 (2019) 485-502.
  • Atilla G., Caglioglu H., 2011, “Vibration analysis of delaminated composite beams using analytical and FEM models”, Indian Journal of Engineering & Material Sciences, Volume 18, Pages 7-14.
  • Atilla O., Emrah M. 2012, “Free vıbratıon analysıs of cross-ply lamınated composıte beams by mıxed fınıte element”, formulatıon ınternational journal of structural stability and Dynamics, Volume 12, No 6, pages 17, DOI: 10.1142/s0219455412500563.
  • Balci, M., Nalbant, M.O., Kara, E., & Gundogdu, O. 2014, “Free Vibration Analysis of a Laminated Composite Beam with Various Boundary Conditions”, International Journal of Automotive and Mechanical Engineering, 9, 1734-1746.
  • D.D.L. Chung, 2018, “Thermoelectric polymer-matrix structural and nonstructural composite materials”, Advanced Industrial and Engineering Polymer Research, Volume 1, Issue 1, Pages 61-65.
  • Farzad E., Ali D. 2018, “On thermo-mechanical vibration analysis of multi-scale hybrid composite beams”, Journal of Vibration and Control, Vol 25, Issue 4, page(s): 933-945, https://doi.org/10.1177/1077546318806800.
  • Gökmen A., Hasan Ç., E. Sahin C., Muzaffer T., Ugur Y. 2008, “Free Vibration Analysis of the Laminated Composite Beams by Using DQM”, Journal of Reinforced Plastics and Composites DOI: 10.1177/0731684407087561.
  • Guigen Z., Helen L., Sachin M., Min W. 2020, “Composites”, Biomaterials Science (Fourth Edition), Academic Press, Pages 415-429, ISBN 9780128161371.
  • Jones, R., M., 1975, “Mechanics of Composite Materials”, Newyork, Hemisphere.
  • K.M.A. Hossain, S. Hasib, T. Manzur, 2020, “Shear behavior of novel hybrid composite beams made of self-consolidating concrete and engineered cementitious composites”, Eng. Structures, Volume 202.
  • Kollar, L.P.; Springer, G.S. 2003, “Mechanics of Composite Structures”, Cambridge University, 480, New York.
  • Lurie K.A., Cherkaev A.V. 2018, "Effective Characteristics of Composite Materials and the Optimal Design of Structural Elements. In: Cherkaev A.V., Kohn R. (eds) Topics in the Mathematical Modelling of Composite Materials. Modern Birkhäuser Classics. Birkhäuser, Cham.
  • Petyt, M. 1990, “Introduction to Finite Element Vibration Analysis”, Cambridge University, 558, New York.
  • Reddy, J., N., Wang, C., M., Lee, K., H., 1997, “Relationships Between Bending Solutions of Classical and Shear Deformation Beam Theories”, International Journal of Solids and Structures, Vol. 34, 26, 3373-3384.
  • S.S. Bhavikatti, 2007 “Finite Element Analysis”, New age international Publishers.
  • Wang, C.M., Reddy, J.N., Lee, K.M. 2000. “Shear deformable beams and plates relations with classical solutions”, Elsevier, 296, Oxford.