İZMİR İLİNDE AL2O3: C DOZİMETRELER KULLANILARAK SOLAR UVB RADYASYONUNUN ÖLÇÜLMESİ

Solar UV radyasyonunun ekolojik sistem üzerine önemli etkileri olduğu bilinmektedir. Stratosferdeki ozon tabakasının incelmesi nedeniyle yeryüzüne ulaşan ultraviyole (UV) radyasyonundaki artışların oluşturabileceği riskler birçok araştırmacı tarafından çalışılmaktadır. UVB radyasyonu, küresel solar UV radyasyonunun sadece küçük bir kısmını oluştursa da, insan ve hayvanlar ile bitkiler üzerinde zararlı etkilere neden olmaktadır. Ayrıca, UVB radyasyonun karasal ve deniz ekosistemindeki canlı organizmalar üzerinde olumsuz etkileri de bulunmaktadır. Bu çalışmanın amacı, solar UVB radyasyonunun ölçülmesinde termolüminesans dozimetrelerinin (TLD) kullanılabilirliğini araştırmaktır. TLD'ler, ucuz olmaları kolay bulunabilmeleri ve basit kullanımları gibi bazı üstün özelliklere sahiptir. Araştırmamızda, UVB radyasyonunu ölçmek için Al2O3: C termolüminesans dozimetreleri kullanılmış olup bunlar, düşük iyonlaştırıcı radyasyon dozlarına ve UVB radyasyonuna çok duyarlıdır. Yeryüzüne ulaşan UVB radyasyonunun günlük miktarıçalışma yapılan günlerde 09:00 ile 16:00 saatleri arasında periyodik olarak alüminyum oksit dozimetrelerle ölçülmüştür. Elde edilen sonuçların Ege Üniversitesi Güneş Enerjisi Enstitüsü' nden alınan UV radyasyon verileri ile uyumlu olduğu görülmüştür.

MEASUREMENT OF SOLAR UVB RADIATION USING AL2O3:C DOSIMETERS IN CITY OF IZMIR

It is well known that UV radiation has a significant effect on our ecologic system. The risks that may be caused by the increases in ultraviolet (UV) radiation reaching the earth’s surface due to the depletion of stratospheric ozone have been studied by many researchers. Although UVB radiation consists only a small fraction of the global solar UV radiation, it causes harmful effects on human, animal and plant. Furthermore, UVB may have several adverse effects on living organism in terrestrial and sea ecosystem. The aim of this work is to investigate the usability of thermoluminescence dosimeters (TLDs) in measuring the solar UVB radiation. TLDs have some superior characteristics such as their availability, being cheap and easy to use. In this study, we used Al2O3:C thermoluminescence dosimeters for measuring the UVB radiation, They are very sensitive to low ionizing radiation doses and UVB radiation. The daily exposures of the ground surface UVB radiation were periodically measured using aluminium oxide dosimeters. The measurements were taken from 09:00 to 16:00 in each study day. Obtained results were observed to be consistent with the UV data received from Ege University, Solar Energy Institute.

___

  • [1]. Abdullah M. N., Yusoff M. A., Rosli H. M., Bradley, D. A., (2001). Investigation of some commercial TLD chips/discs as UV dosimeters, Radiation Physics and Chemistry, 61, 497–499.
  • [2]. Bassi, P., Busuoli, G., Rimondi, O., (1975). High intrinsic TL of CaF2:Dy to UV light, J.Health Phy. 28 (4), 470–471.
  • [3]. Caldwell, M. M., Flint, S. D., (1994). Stratospheric ozone reduction solar UV-B radiation and terrestrial ecosystems, Climatic Change 28(4), 375–394.
  • [4]. Diepgen, T. L., Fartasch, M., Drexler, H., Schmitt, J., (2012). Occupational skin cancer induced by ultraviolet radiation and its prevention, Br. J. Dermatol. 167, 76–84.
  • [5]. Diffey, B. L., (2002). Human exposure to solar ultraviolet radiation, Journal of Cosmetic Dermatology 1, 124–130.
  • [6]. Diffey, B. L., (2002). Sources and measurement of ultraviolet radiation, Methods 28, 4–13.
  • [7]. Duggan, L., Budzanowski, M., Przegietka, K., Reitsema, N., Wong, J., Kron, T., (2000). The light sensitivity of thermoluminescent materials: LiF:Mg, Cu, P, LiF:Mg, Ti and Al2O3:C, Radiation Measurements, 32(4), 335-342.
  • [8]. Edwin, C., Cary, D., John, R., (1972). Thermoluminescence in natural calcium fluoride as a dosimeter for terrestrial solar ultraviolet radiation, J. Appl. Phy. 43 (1), 77–82.
  • [9]. Ekici, M., Aksoy, B., (2001). Ultraviole Radyasyon Teknik Rapor, DMİ. Genel Müdürlüğü, Ankara.
  • [10]. Escobar -Alarcón, L., Villagrán, E., Camps, E., Romero, S., Villarreal-Barajas, J. E., González, P.R., (2003). Thermoluminescence of aluminum oxide thin films subject to ultraviolet irradiation, Thin Solid Films, 433, 126–130.
  • [11]. Gimeenez, V. B., Ysasi, G. G., Moreno J. C., Serrano, M. A., (2015). Maximum Incident Erythemally Effective UV Exposure Received by Construction Workers, in Valencia, Spain, Photochemistry and Photobiology, 91: 1505–1509.
  • [12]. Humble, M. B., (2010). Vitamin D, light and mental health. J. Photochem. Photobiol. B. Biol. 101, 142–149.
  • [13]. Madronich, S., McKenzie, R.L., Bjorn, L. O., Caldwell, M.M., (1998). Changes in biologically active ultraviolet radiation reaching the Earth’s surface, Journal of Photochemistry and Photobiology B: Biology 46, 5–19.
  • [14]. McKeever, S. W. S., Akselrod, M. S. , Colyott, L. E. , Agersnap Larsen, N., Polf, J. C., Whitley, V., (1999). Characterization of Al2O3 for use in thermally and optically stimulated luminescence dosimetry, Radiation Protection Dosimetry 84:163-166.
  • [15]. McKenzie, R. L., Aucamp, P. J., Bais, A. F., Björn, L. O., Ilyas, M., Madronich, S., (2011). Ozone depletion and climate change: impacts on UV radiation, Photochem. Photobiol. Sci., 10, 182–198.
  • [16]. Medhaug, I., Olseth, J. A., Reuder, J., (2009). UV radiation and skin cancer in Norway, Journal of Photochemistry and Photobiology B: Biology 96, 232–241.
  • [17]. Nerushev, A. F., Tereb, N. V., (2004). Comparison of Ground-based and Satellite Measurements of Ultraviolet Radiation Exposures near the Ground, 2003 IEEE International Geoscience and Remote Sensing Symposium (IGARSS), Proceedings, IEEE Xplore, DOI: 10.1109/IGARSS.2003.1294424
  • [18]. Norval, M., Cullen, A. P., de Grujil, F. R., Longstreth, J., Takizawa, Y., Lucas, R. M., Noonan, F. P., van del Leun, J. C., (2007). The effects on human health from stratospheric ozone depletion and its interactions with climate change. Photochem. Photobiol. Sci. 6, 232–251.
  • [19]. Oster, L., Weiss, D., Kristianpoller, N., (1994). A study of photostimulated thermoluminescence in C-doped Al2O3 crystals. J. Appl. Phy. 27, 1732–1736.
  • [20]. Pradhan, A.S., Dash Shrmo, P.K., Shirva, V.K., (1996). Thermoluminescence response of Al2O3:C to UV and ionizing radiation. J. Radiat. Prot. Dosim. 64 (3), 227–231.
  • [21]. Saez-Vergana, J.C., Romero, A. M., (1996). Measurement of daily environmental radiation doses using hypersensitive thermoluminescence materials, Radiation Protection and Dosimetry, Volume 66 No:1-4, pp. 167-172.
  • [22]. Sawakuchi, G.O., Yukihara, E.G., McKeever, S.W.S., Benton, E.R., (2008). Optically stimulated luminescence fluence response of Al2O3:C dosimeters exposed to different types of radiation, Radiation Measurements, 43, 450 – 454.
  • [23]. Siani, A. M., Casale, G. R., Sisto, R., Borra, M., Kimlin M. G., Lang, C. A., Colosimo, A., (2009). Short-term UV Exposure of Sunbathers at a Mediterranean Sea Site, Photochemistry and Photobiology, 85, 171–177.
  • [24]. Sliney D. H., (2007). International Commission on Illumination, Radiometric Quantities and Units Used in Photobiology and Photochemistry: Recommendations of the Commission Internationale de l’Eclairage (International Commission on Illumination), Photochem Photobiol. 83, 425-32.
  • [25]. Sono, D. A., McKeever, S. W. S., (2002). Phototransferred Thermo-luminescence for Use in UVB Dosimetry, Radiation Protection Dosimetry, 100 (1-4), 309–312.
  • [26]. Ultraviolet Radiation Guide, (1992). Technical Manual NEHC-TM92-5, Bureau of Medicine and Surgery, Navy Environmental Health Center.
  • [27]. United Nations Environmental Programme, Environmental Effects of Ozone Depletion: 2006 Assessment, Technical Report, WMO/UNEP, Nairobi, Kenya, 2007.
  • [28]. Vij, D. R., (1993). Thermoluminescence materials, PTR Prentice-Hall, Inc. A Simon a Schuster Company, Englewood Cliffs, New Jersey 07632.