Tekstil Atıksularının Elektrokoagülasyon Prosesiyle Arıtımının İncelenmesi

Bu çalışmada, Elektrokoagülasyon (EC) prosesinin temel mekanizması, prosesi etkileyen işletme parametrelerinin tekstil atıksuyundan kirletici giderimi üzerine etkileri tartışılmıştır. Tekstil endüstrisinin gelişmesiyle beraber oluşan kirleticilerin konsantrasyonları artmış ve bu durum çeşitli çevresel problemler oluşturmuştur. Tekstil atıksuları, yüksek askıda katı madde içeriği, bulanıklık, kimyasal oksijen ihtiyacı ve renk ile karakterize edilir. Oluşan atıksuların çevreye deşarjı öncesi etkili ve verimli arıtma proseslerine ihtiyaç vardır. EC, çok yönlülüğü, kurulum kolaylığı ve çevre dostu olması nedeniyle son yıllarda endüstriyel atıksuların arıtılmasında yaygın olarak kullanılmaktadır. EC prosesi için enerji gereksinimi ve oluşan çamur miktarı diğer arıtma proseslerine göre çok daha azdır. Bu gibi avantajlarından dolayı EC nin tekstil atıksularının arıtımında kullanımı yaygın olarak kabul görmektedir.

Investigation of Textile Wastewater Treatment by Electrocoagulation Process

In this study, the basic mechanism of the Electrocoagulation (EC) process and the effects of operating parameters affecting the process on pollutant removal from textile wastewater are discussed. With the development of the textile industry, the concentrations of pollutants have increased and this has created various environmental problems. Textile wastewater is characterized by high suspended solids content, turbidity, chemical oxygen demand and color. There is a need for effective and efficient treatment processes before the resulting wastewater is discharged to the environment. EC has been widely used in the treatment of industrial wastewater in recent years due to its versatility, ease of installation and environmental friendliness. The energy requirement and the amount of sludge formed for the EC process are much less than other treatment processes. Due to such advantages, the use of EC in the treatment of textile wastewater is widely accepted.

___

  • Babu, D. S., Anantha Singh, T. S., Nidheesh, P. V., & Kumar, M. S. (2019). Industrial wastewater treatment by electrocoagulation process. Separation Science and Technology, 55(17), 3195-3227. https://doi.org/10.1080/01496395.2019.1671866
  • Hakizimana, J. N., Gourich, B., Chafi, M., Stiriba, Y., Vial, C., Drogui, P., & Naja, J. (2017). Electrocoagulation process in water treatment: A review of electrocoagulation modeling approaches. Desalination, 404, 1-21. http://doi.org/10.1016/j.desal.2016.10.011
  • Khandegar, V., & Saroha, A.K. (2013). Electrocoagulation for the treatment of textile industry effluent ─ A review. Journal of Environmental Management, 128, 949-963. http://doi.org/10.1016/j.jenvman.2013.06.043
  • Hao, O. J., Kim, H., & Chiang, P. C. (2000). Decolorization of wastewater. Critical Reviews in Environmental Science and Technology, 30(4), 449-505. https://doi.org/10.1080/10643380091184237
  • Samsunlu, A. (2011). Atık Suların Arıtılması. Birsen Yayınevi, İstanbul.
  • Wang, J. P., Chen, Y. Z., Ge, X. W., & Yu, H. Q. (2007). Optimization of coagulation-flocculation process for a paper-recycling wastewater treatment using responce surface methodology. Colloids and Surfaces A: Physicochemical and Engineering Aspects, 302(1-3), 204-210. https://doi.org/10.1016/j.colsurfa.2007.02.023
  • Lin, J., Couperthwaite, S. J., & Millar, G. J. (2017). Effectiveness of aluminium based coagulants for pre-treatment of coal seam water. Separation and Purification Technology, 177, 207-222. https://doi.org/10.1016/j.seppur.2017.01.010
  • Jiang, J. Q., Graham, N., André, C., Kelsall, G. H., & Brandon, N. (2002). Laboratory study of electro-coagulation-flotation for water treatment. Water Research, 36(16), 4064-4078. https://doi.org/10.1016/S0043-1354(02)00118-5
  • Dotto, J., Fagundes-Klen, M. R., Veit, M. T., Palácio, S. M., & Bergamasco, R. (2019). Performance of different coagulants in the coagulation/flocculation process of textile wastewater. Journal of Cleaner Production, 208, 656-665. https://doi.org/10.1016/j.jclepro.2018.10.112
  • Chawaloesphonsiya, N., Guiraud, P., & Painmanakul, P. (2018). Analysis of cutting-oil emulsion destabilization by aluminum sulphate. Environmental Technology, 39(11), 1450-1460. https://doi.org/10.1080/09593330.2017.1332101
  • Amuda, O. S., & Amoo, I. A. (2007). Coagulation/flocculation process and sludge conditioning in beverage industrial wastewater treatment. Journal of Hazardous Materials, 141(3), 778-783. https://doi.org/10.1016/j.jhazmat.2006.07.044
  • Mahdavi, M., Amin, M. M., Hajizadeh, Y., Farrokhzadeh, H., & Ebrahimi, A. (2017). Removal of different NOM fractions from spent filter backwash water by polyaluminum ferric chloride and ferric chloride. Arabian Journal for Science and Engineering, 42, 1497-1504. https://doi.org/10.1007/s13369- 016-2364-3
  • Georgiou, D., Aivazidis, A., Hatiras, J., & Gimouhopoulos, K. (2003). Treatment of cotton textile wastewater using lime and ferrous sulfate. Water Research, 37(9), 2248-2250. https://doi.org/10.1016/S0043-1354(02)00481-5
  • Atari, L., Esmaeili, S., Zahedi, A., Mohammadi, M. J., Zahedi, A., & Babaei, A. A. (2019). Removal of heavy metals by conventional water treatment plants using poly aluminum chloride. Toxin Reviews, 38(2), 127-134. https://doi.org/10.1080/15569543.2018.1431676
  • Liang, Y. L., Kraus, T. E. C., Silva, L. C. R., Bachand, P. A. M., Bachand, S. M., Doane, T. A., & Horwath, W. R. (2019). Effects of ferric sulfate and polyaluminum chloride coagulation enhanced treatment wetlands on Typha growth, soil and water chemistry. Science of The Total Environment, 648, 116-124. https://doi.org/10.1016/j.scitotenv.2018.07.341
  • Moussa, D. T., El-Naas, M. H., Nasser, M., & Al-Marri, M. J. (2017). A comprehensive review of electrocoagulation for water treatment: Potentials and challenges. Journal of Environmental Management, 186, 24-41. http://doi.org/10.1016/j.jenvman.2016.10.032
  • Barrera-Díaz, C., Frontana-Uribe, B., & Bilyeu, B. (2014). Removal of organic pollutants in industrial wastewater with an integrated system of copper electrocoagulation and electrogenerated H2O2. Chemosphere, 105, 160-164. https://doi.org/10.1016/j.chemosphere.2014.01.026
  • Kong, F., Lin, X., Sun, G., Chen, J., Guo, C., & Xie, Y. F. (2019). Enhanced organic removal for shale gas fracturing flowback water by electrocoagulation and simultaneous electro-peroxone process. Chemosphere, 218, 252-258. https://doi.org/10.1016/j.chemosphere.2018.11.055
  • Gong, C., Shen, G., Huang, H., He, P., Zhang, Z., & Ma, B. (2017). Removal and transformation of polycyclic aromatic hydrocarbons during electrocoagulation treatment of an industrial wastewater. Chemosphere, 168, 58-64. https://doi.org/10.1016/j.chemosphere.2016.10.044
  • Nidheesh, P. V., & Singh, T. S. (2017). Arsenic removal by electrocoagulation process: Recent trends and removal mechanism. Chemosphere, 181, 418-432. https://doi.org/10.1016/j.chemosphere.2017.04.082
  • Aoudj, S., Khelifa, A., & Drouiche, N. (2017). Removal of fluoride, SDS, ammonia and turbidity from semiconductor wastewater by combined electrocoagulation─electroflotation. Chemosphere, 180, 379-387. https://doi.org/10.1016/j.chemosphere.2017.04.045
  • Ghernaout, D., Naceur, M. W., & Ghernaout, B. (2011). A review of electrocoagulation as a promising coagulation process for improved organic and inorganic matters removal by electrophoresis and electroflotation. Desalination and Water Treatment, 28(1-3), 287-320. https://doi.org/10.5004/dwt.2011.1493
  • Vepsäläinen, M., Kivisaari, H., Pulliainen, M., Oikari, A., & Sillanpää, M. (2011). Removal of toxic pollutants from pulp mill effluents by electrocoagulation. Separation and Purification Technology, 81(2), 141-150. https://doi.org/10.1016/j.seppur.2011.07.017
  • Ghernaout, D., Touahmia, M., & Aichouni, M. (2019). Disinfecting water: Electrocoagulation as an efficient process. Applied Engineering, 3(1), 1-12. doi: 10.11648/j.ae.20190301.11
  • Heffron, J., Ryan, D. R., & Mayer, B. K. (2019). Sequential electrocoagulation-electrooxidation for virus mitigation in drinking water. Water Research, 160, 435-444. https://doi.org/10.1016/j.watres.2019.05.078
  • Omwene, P. I., & Kobya, M. (2018). Treatment of domestic wastewater phosphate by electrocoagulation using Fe and Al electrodes: A comparative study. Process Safety and Environmental Protection, 116, 34-51. https://doi.org/10.1016/j.psep.2018.01.005
  • Sharma, A. K., & Chopra, A. K. (2017). Removal of nitrate and sulphate from biologically treated municipal wastewater by electrocoagulation. Applied Water Science, 7, 1239-1246. https://doi.org/10.1007/s13201-015-0320-0
  • Omwene, P. I., Kobya, M., & Can, O. T. (2018). Phosphorus removal from domestic wastewater in electrocoagulation reactor using aluminum and iron plate hybrid anodes. Ecological Engineering, 123, 65-73. https://doi.org/10.1016/j.ecoleng.2018.08.025
  • Elazzouzi, M., Haboubi, Kh., & Elyoubi, M. S. (2017). Electrocoagulation flocculation as a low cost process for pollutants removal from urban wastewater. Chemical Engineering Research and Design, 117, 614-626. https://doi.org/10.1016/j.cherd.2016.11.011
  • Hamdan, S. S., & El-Naas, M. H. (2014). An electrocoagulation column (ECC) for groundwater purification. Journal of Water Process Engineering, 4, 25-30. https://doi.org/10.1016/j.jwpe.2014.08.004
  • Demirbas, E., Kobya, M., Oncel, M. S., Şık, E., & Goren, A. Y. (2019). Arsenite removal from groundwater in a batch electrocoagulation process: Optimization through response surface methodology. Separation Science and Technology, 54(5), 775-785. https://doi.org/10.1080/01496395.2018.1521834
  • Sandoval, M. A., Fuentes, R., Nava, J. L., Coreño, O., Li, Y., & Hernández, J. H. (2019). Simultaneous removal of fluoride and arsenic from groundwater by electrocoagulation using a filterpress flow reactor with a three-cell stack. Separation and Purification Technology, 208, 208-216. https://doi.org/10.1016/j.seppur.2018.02.018
  • Timmes, T. C., Kim, H. C., & Dempsey, B. A. (2010). Electrocoagulation pretreatment of seawater prior to ultrafiltration: Pilot-scale applications for military water purification systems. Desalination, 250(1), 6-13, https://doi.org/10.1016/j.desal.2009.03.021
  • Zhang, X., Lu, M., Idrus, M. A. M., Crombie, C., & Jegatheesan, V. (2019). Performance of precipitation and electrocoagulation as pretreatment of silica removal in brackish water and seawater. Process Safety and Environmental Protection, 126, 18-24. https://doi.org/10.1016/j.psep.2019.03.024
  • Kabdaşlı, I., Arslan-Alaton, I., Ölmez-Hancı, T., & Tünay, O. (2012). Electrocoagulation applications for industrial wastewaters: a critical review. Environmental Technology Reviews, 1(1), 2- 45. https://doi.org/10.1080/21622515.2012.715390
  • Yavuz, Y., & Ögütveren, Ü. B. (2018). Treatment of industrial estate wastewater by the application of electrocoagulation process using iron electrodes. Journal of Environmental Management, 207, 151- 158. https://doi.org/10.1016/j.jenvman.2017.11.034
  • Krystynik, P., Masin, P., Krusinova, Z., & Kluson, P. (2019). Application of electrocoagulation for removal of toxic metals from industrial effluents. International Journal of Environmental Science and Technology, 16, 4167-4172. https://doi.org/10.1007/s13762-018-2074-3
  • Verma, S. K., Khandegar, V., & Saroha, A. K. (2013). Removal of chromium from elektroplating industry effluent using electrocoagulation. Journal of Hazardous, Toxic, and Radioactive Waste, 17, 146-152. https://doi.org/10.1061/(ASCE)HZ.2153-5515.0000170
  • Daneshvar, N., Oladegaragoze, A., & Djafarzadeh, N. (2006). Decolorization of basic dye solutions by electrocoagulation: An investigation of the effect of operational parameters. Journal of Hazardous Materials, 129(1-3), 116-122. https://doi.org/10.1016/j.jhazmat.2005.08.033
  • Yıldız, Y. Ş., Koparal, A. S., & Keskinler, B. (2008). Effect of initial pH and supporting electrolyte on the treatment of water containing high concentration oh humic substances by electrocoagulation. Chemical Engineering Journal, 138(1-3), 63-72. https://doi.org/10.1016/j.cej.2007.05.029
  • Bener, S., Bulca, Ö., Palas, B., Tekin, G., Atalay, S., & Ersöz, G. (2019). Electrocoagulation process for the treatment of real textile wastewater: Effect of operative conditions on the organic carbon removal and kinetic study. Process Safety and Environmental Protection, 129, 47-54. https://doi.org/10.1016/j.psep.2019.06.010
  • Demirbas, E., & Kobya, M. (2017). Operating cost and treatment of metalworking fluid wastewater by chemical coagulation and electrocoagulation processes. Process Safety and Environmental Protection, 105, 79-90. https://doi.org/10.1016/j.psep.2016.10.013
  • Das, P. P., Sharma, M., & Purkait, M. K. (2022). Recent progress on electrocoagulation process for wastewater treatment: A review. Separation and Purification Technology, 292, 121058. https://doi.org/10.1016/j.seppur.2022.121058
  • Ghosh, D., Solanki, H., & Purkait, M. K. (2008). Removal of Fe(II) from tap water by electrocoagulation technique. Journal of Hazardous Materials, 155(1-2), 135-143. https://doi.org/10.1016/j.jhazmat.2007.11.042
  • Larue, O., Vorobiev, E., Vu, C., & Durand, B. (2003). Electrocoagulation and coagulation by iron of latex particles in aqueous suspensions. Separation and Purification Technology, 31(2), 177-192. https://doi.org/10.1016/S1383-5866(02)00182-X
  • Tahreen, A., Jami, M. S., & Ali, F. (2020). Role of electrocoagulation in wastewater treatment: A developmental review. Journal of Water Process Engineering, 37, 101440. https://doi.org/10.1016/j.jwpe.2020.101440
  • Chen, X., Ren, P., Li, T., Trembly, J. P., & Liu, X. (2018). Zinc removal from model wastewater by electrocoagulation: Processing, kinetics and mechanism. Chemical Engineering Journal, 349, 358- 367. https://doi.org/10.1016/j.cej.2018.05.099
  • Changmai, M., Pasawan, M., & Purkait, M. K. (2019). Treatment of oily wastewater from drilling site using electrocoagulation followed by microfiltration. Separation and Purification Technology, 210, 463-472. https://doi.org/10.1016/j.seppur.2018.08.007
  • Rahman, N. A., Tomiran, N. A., & Hashim, A. H. (2020). Batch electrocoagulation treatment of peat water in Sarawak with galvanized iron electrodes. Materials Science Forum, 997, 127-138. https://doi.org/10.4028/www.scientific.net/MSF.997.127
  • Daneshvar, N., Sorkhabi, H. A., & Kasiri, M. B. (2004). Decolorization of dye solution containing Acid Red 14 by electrocoagulation with a comparative investigation of different electrode connections. Journal of Hazardous Materials, 112(1-2), 55-62. https://doi.org/10.1016/j.jhazmat.2004.03.021
  • Tirado, L., Gökkuş, Ö., Brillas, E., & Sirés, I. (2018). Treatment of cheese whey wastewater by combined electrochemical processes. Journal of Applied Electrochemistry, 48, 1307-1319. https://doi.org/10.1007/s10800-018-1218-y
  • Sahu, O., Mazumdar, B., & Chaudhari, P. K. (2014). Treatment of wastewater by electrocoagulation: a review. Environmental Science and Pollution Researh, 21, 2397-2413. https://doi.org/10.1007/s11356-013-2208-6