Bakır(II)–Sulfametazin-2,2'-bipiridin Kompleksinin Hesaplamalı Kimya Yöntemi ile Spektroskopik Özelliklerinin İncelenmesi: Moleküler Modelleme Çalışması, ADME/T

[Cu(smz)2bipy] kompleksinin teorik hesaplamaları DFT (Yoğunluk Fonksiyonel Teorisi) yöntemi ile B3LYP ve LanL2DZ baz seti kullanılarak hesaplanmıştır. Hesaplamalar sonucunda elde edilen değerler, deneysel yapının geometrik parametreleri ile oldukça uyumludur. Bununla birlikte sulfamethazin ligantının DFT/B3LYP/6-311G baz seti kullanılarak hesaplanmıştır ve sonuçlar kompleks yapı ile karşılaştırılmıştır. Kompleks optimize edildikten sonra EHOMO ve ELUMO değerleri saptanmıştır. Sınır Moleküler Orbitalleri (FMOs) ile kompleks ve serbest ligant (Hsmz)’nin kimyasal ve biyolojik aktiviteleri karşılaştırılmıştır. Mulliken popülasyon analizi, MEP (Moleküler Elektrostatik Potansiyel) ve MEP kontör gösterimi ile kompleksin elektrofilik ve nükleofilik bölgeleri belirlenmiştir. Kompleksin ve Hsmz ligantının deneysel IR (Infrared) sonuçları teorik olarak elde edilen değerler ile karşılaştırılmıştır. Hirshfeld yüzey analizi yöntemi ile moleküller arası etkileşimleri ayrıntılı incelenmiştir. Ayrıca E. coli bakterisi üzerinde olumlu sonuçlar verdiği dikkate alınarak PDB (Protein Data Bank)’dan Giraz Tip IIA Topoisomeraz ve DNA Giraz enzimleri indirilerek moleküler kenetleme çalışması yapılmıştır. Kompleks, in-silico yöntem ile ADME/T özellikleri incelenerek ilaç özelliği taşıyıp taşımadığı tartışılmıştır.

Investigation of Spectroscopic Properties with Computational Chemistry Method of Copper(II)–sulfamethazine-2,2'-bipyridine Complex: Molecular Modeling Study and ADME/T

Theoretical calculations of the [Cu(smz)2bipy] complex were calculated using the DFT (Density Functional Theory) method and the B3LYP and LanL2DZ basis set. In the result of the calculations obtained are quite compatible with the geometric parameters of the experimental structure. However, it was calculated using the DFT/B3LYP/6-311G basis set of the sulfamethazine ligand and the results were compared with the complex structure. After the complex was optimized, EHOMO and ELUMO values were determined. The chemical and biological activities of Frontier Molecular Orbitals (FMOs) and complex and free ligand (Hsmz) were compared. Electrophilic and nucleophilic regions of the complex were determined by Mulliken population analysis, MEP (Molecular Electrostatic Potential) and MEP counter notation. The experimental IR (Infrared) results of the complex and the Hsmz ligand were compared with the theoretically obtained values. Intermolecular interactions were investigated in detail with the Hirshfeld surface analysis method. In addition, considering that it gave positive results on E. coli bacteria, Gyrase Type IIA Topoisomerase and DNA Gyrase enzyme were downloaded from PDB (Protein Data Bank) and molecular insertion study was carried out. ADME/T properties were examined with the complex, in-silico method and it was discussed whether it has drug properties or not.

___

  • Tekeli, Y., Lolak, N., Sonmez, G. D., Tekeli, T. & Akocak, S. (2022). Antibacterial, antioxidant and DNA cleavage activity evaluation of substituted phenylureido sulfaguanidine and sulfamethazine derivatives. Pharmaceutical Chemistry Journal, 56(3), 345-349. https://doi.org/10.1007/s11094-022-02654-7
  • Scozzafava, A., Owa, T., Mastrolorenzo, A. & Supuran, C. T. (2003). Anticancer and antiviral sulfonamides. Current Medicinal Chemistry, 10(11), 925-953. https://doi.org/10.2174/0929867033457647
  • Mansour, A. M., Abdel‐Ghani, N. T. & Ragab, M. S. (2020). DNA/bovine serum albumin binding and cytotoxicity of transition metal ternary complexes based on sulfamethazine and bromazepam drugs. Applied Organometallic Chemistry, 34(12), e5995. https://doi.org/10.1002/aoc.5995
  • Timerbaev, A. R., Hartinger, C. G., Aleksenko, S. S. & Keppler, B. K. (2006). Interactions of antitumor metallodrugs with serum proteins: advances in characterization using modern analytical methodology. Chemical Reviews, 106(6), 2224-2248. https://doi.org/10.1021/cr040704h
  • Baenziger, N. & Struss, A. W. (1976). Crystal structure of 2-sulfanilamidopyrimidinesilver (I). Inorganic Chemistry, 15(8), 1807-1809.
  • Cook, D. S. & Turner, M. F. (1975). Crystal and molecular structure of silver sulphadiazine (N 1-pyrimidin-2-ylsulphanilamide). Journal of the Chemical Society, Perkin Transactions 2, (10), 1021-1025. https://doi.org/10.1021/ic50162a014
  • Baenziger, N., Modak, S. & Fox, C. (1983). Diamminebis (2-sulfanilamidopyrimidinato) zinc (II),[Zn (C10H9N4O2S) 2 (NH3) 2]. Acta Crystallographica Section C: Crystal Structure Communications, 39(12), 1620-1623. https://doi.org/10.1107/S0108270183009506
  • Ferrer, S., Borrás, J. & Garcia-España, E. (1990). Complex formation equilibria between the acetazolamide ((5-acetamido-1, 3, 4-thiadiazole)-2-sulphonamide), a potent inhibitor of carbonicanhydrase, and Zn (II), Co (II), Ni (II) and Cu (II) in aqueous and ethanol-aqueous solutions. Journal of Inorganic Biochemistry, 39(4), 297-306. https://doi.org/10.1016/0162-0134(90)80028-V
  • Supuran, C. T., Mincione, F., Scozzafava, A., Briganti, F., Mincione, G. & Ilies, M. A. (1998). Carbonic anhydrase inhibitors—part 52. Metal complexes of heterocyclic sulfonamides: a new class of strong topical intraocular pressure-lowering agents in rabbits. European Journal of Medicinal Chemistry, 33(4), 247-254. https://doi.org/10.1016/S0223-5234(98)80059-7
  • Scozzafava, A., Menabuoni, L., Mincione, F., Briganti, F., Mincione, G. & Supuran, C. T. (1999). Carbonic anhydrase inhibitors. Synthesis of water-soluble, topically effective, intraocular pressure-lowering aromatic/heterocyclic sulfonamides containing cationic or anionic moieties: is the tail more important than the ring? Journal of Medicinal Chemistry, 42(14), 2641-2650. https://doi.org/10.1021/jm9900523
  • Öztürk, F., Aycan, T. & Özdemir, N. (2019). Cu (II)-sulfamethazine complex with N-(2-hydroxyethyl)-ethylenediamine: synthesis, spectroscopic, structural characterization and antimicrobial activity. Journal of Coordination Chemistry, 72(19-21), 3359-3370. https://doi.org/10.1080/00958972.2019.1692201
  • Barboiu, M., Cimpoesu, M., Guran, C. & Supuran, C. T. (1996). 1, 3, 4-Thiadiazole derivatives. part 91. synthesis and biological activity of metal complexes of 5-(2-aminoethyl)-2-amino-1, 3, 4-thiadiazole. Metal-Based Drugs, 3(5), 227-232. Briganti, F., Scozzafava, A. & Supuran, C. (1997). Sulfonylamido derivatives of aminoglutethimide and their copper (II) complexes: a novel class of antifungal compounds. European Journal of Medicinal Chemistry, 32(11), 901-910. https://doi.org/10.1016/S0223-5234(97)82776-6
  • Tiwari, R., Haridas, M. & Singh, T. (1984). Structure of 4-amino-N-(4, 6-dimethyl-2-pyrimidinyl) benzenesulphonamide (sulfadimidine), C12H14N4O2S. Acta Crystallographica Section C: Crystal Structure Communications, 40(4), 655-657. https://doi.org/10.1107/S0108270184005229
  • Giuseppetti, G., Tadini, C. & Bettinetti, G. (1994). 1: 1 Molecular complex of trimethoprim and sulfametrole. Acta Crystallographica Section C: Crystal Structure Communications, 50(8), 1289-1291. https://doi.org/10.1107/S0108270193013253
  • Koyanagi, N., Nagasu, T., Fujita, F., Watanabe, T., Tsukahara, K., Funahashi, Y., Fujita, M., Taguchi, T., Yoshino, H. & Kitoh, K. (1994). In vivo tumor growth inhibition produced by a novel sulfonamide, E7010, against rodent and human tumors. Cancer Research, 54(7), 1702-1706.
  • Mansour, A. M. (2013). Molecular structure and spectroscopic properties of novel manganese (II) complex with sulfamethazine drug. Journal of Molecular Structure, 1035, 114-123. https://doi.org/10.1016/j.molstruc.2012.09.048
  • Öztürk, F., Sulfonamid türevlerinin metal komplekslerinin sentezi, yapı analizi, spektroskopik ve elektrokimyasal özelliklerinin incelenmesi / Synthesis, structural, spectroscopic and electrochemical investigation of metal complexes of sulfonamide derivatives, Physics, [Doktora Tezi, Ondokuz Mayıs University], 2015, p. 78.
  • Frisch, M., Trucks, G. W., Schlegel, H. B., Scuseria, G. E., Robb, M. A., Cheeseman, J. R., Scalmani, G., Barone, V., Mennucci, B. & Petersson, G. e. (2014). Gaussian∼ 09 Revision D. 01.
  • Dennington II, R., Keith, T. & Millam, J. (2009). GaussView 5.0, Wallingford, CT.
  • Becke, A. D. (1993). Density‐functional thermochemistry. III. The role of exact exchange. The Journal of Chemical Physics, 98(7), 5648-5652. https://doi.org/10.1063/1.464913
  • Lee, C., Yang, W. & Parr, R. G. (1988). Development of the Colle-Salvetti correlation-energy formula into a functional of the electron density. Physical Review B, 37(2), 785-789. https://doi.org/10.1103/PhysRevB.37.785.
  • Chiodo, S., Russo, N. & Sicilia, E. (2006). LANL2DZ basis sets recontracted in the framework of density functional theory. The Journal of Chemical Physics, 125(10), 104107. https://doi.org/10.1063/1.2345197. 10.1063/1.2345197
  • Check, C. E., Faust, T. O., Bailey, J. M., Wright, B. J., Gilbert, T. M. & Sunderlin, L. S. (2001). Addition of polarization and diffuse functions to the LANL2DZ basis set for p-block elements. The Journal of Physical Chemistry A, 105(34), 8111-8116. https://doi.org/10.1021/jp011945l
  • Frisch, M. J., Pople, J. A. & Binkley, J. S. (1984). Self‐consistent molecular orbital methods 25. Supplementary functions for Gaussian basis sets. The Journal of Chemical Physics, 80(7), 3265-3269. https://doi.org/10.1063/1.447079.
  • O'boyle, N. M., Tenderholt, A. L. & Langner, K. M. (2008). Cclib: a library for package‐independent computational chemistry algorithms. Journal of Computational Chemistry, 29(5), 839-845. https://doi.org/10.1002/jcc.20823
  • Turner, M., McKinnon, J., Wolff, S., Grimwood, D., Spackman, P., Jayatilaka, D. & Spackman, M. (2017). CrystalExplorer17, The University of Western Australia Perth, WA, Australia.
  • Trott, O. & Olson, A. J. (2010). AutoDock Vina: improving the speed and accuracy of docking with a new scoring function, efficient optimization, and multithreading. Journal of Computational Chemistry, 31(2), 455-461. https://doi.org/10.1002/jcc.21334
  • BIOVIA, D. S. (2015). BIOVIA Discovery Studio Visualizer, v16. 1.0. 15350, San Diego: Dassault Systemes.
  • Daina, A., Michielin, O. & Zoete, V. (2017). SwissADME: a free web tool to evaluate pharmacokinetics, drug-likeness and medicinal chemistry friendliness of small molecules. Scientific Reports, 7(1), 42717. https://doi.org/10.1038/srep42717.
  • Norinder, U. & Bergström, C. A. (2006). Prediction of ADMET properties. ChemMedChem: Chemistry Enabling Drug Discovery, 1(9), 920-937. https://doi.org/10.1002/cmdc.200600155
  • Banerjee, P., Eckert, A. O., Schrey, A. K. & Preissner, R. (2018). ProTox-II: a webserver for the prediction of toxicity of chemicals. Nucleic Acids Research, 46(W1), W257-W263. https://doi.org/10.1093/nar/gky318
  • Banerjee, P., Dehnbostel, F. O. & Preissner, R. (2018). Prediction is a balancing act: ımportance of sampling methods to balance sensitivity and specificity of predictive models based on ımbalanced chemical data sets. Frontiers in Chemistry, 6. https://doi.org/10.3389/fchem.2018.00362.
  • Drwal, M. N., Banerjee, P., Dunkel, M., Wettig, M. R. & Preissner, R. (2014). ProTox: a web server for the in silico prediction of rodent oral toxicity. Nucleic Acids Research, 42(W1), W53-W58. https://doi.org/10.1093/nar/gku401
  • Öztürk, F., Bulut, I. & Bulut, A. (2015). Structural, spectroscopic, magnetic and electrochemical studies of monomer N-substituted-sulfanilamide copper (II) complex with 2, 2′-bipyridine. Spectrochimica Acta Part A: Molecular and Biomolecular Spectroscopy, 138, 891-899. https://doi.org/10.1016/j.saa.2014.10.065
  • Öztürk, F. & Aycan, T. (2021). Çinko (II)–Sulfatiyazol-Dietilentriamin Kompleksinin hesaplamalı kimya yöntemi ile spektroskopik özelliklerinin incelenmesi: Moleküler modelleme çalışması. Afyon Kocatepe Üniversitesi Fen ve Mühendislik Bilimleri Dergisi, 21(1), 65-83. https://doi.org/10.35414/akufemubid.823025
  • İnkaya, E., Günnaz, S., Özdemir, N., Dayan, O., Dinçer, M. & Çetinkaya, B. (2013). Synthesis, spectroscopic characterization, X-ray structure and DFT studies on 2,6-bis(1-benzyl-1H-benzo[d]imidazol-2-yl)pyridine. Spectrochimica Acta Part A: Molecular and Biomolecular Spectroscopy, 103, 255-263. doi:https://doi.org/10.1016/j.saa.2012.11.039
  • Parr, R. G. & Yang, W. (1984). Density functional approach to the frontier-electron theory of chemical reactivity. Journal of the American Chemical Society, 106(14), 4049-4050. https://doi.org/10.1021/ja00326a036
  • Parr, R. G., Donnelly, R. A., Levy, M. & Palke, W. E. (1978). Electronegativity: the density functional viewpoint. The Journal of Chemical Physics, 68(8), 3801-3807. https://doi.org/ 10.1063/1.436185
  • Parr, R. G. & Pearson, R. G. (1983). Absolute hardness: companion parameter to absolute electronegativity. Journal of the American Chemical Society, 105(26), 7512-7516. Srivastava, H., Pasha, F. & Singh, P. (2005). Atomic softness‐based QSAR study of testosterone. International Journal of Quantum Chemistry, 103(3), 237-245. https://doi.org/10.1063/1.436185
  • Parr, R. G., Szentpály, L. v. & Liu, S. (1999). Electrophilicity index. Journal of the American Chemical Society, 121(9), 1922-1924. https://doi.org/10.1021/ja983494x
  • Chattaraj, P. K., Maiti, B. & Sarkar, U. (2003). Philicity: a unified treatment of chemical reactivity and selectivity. The Journal of Physical Chemistry A, 107(25), 4973-4975. https://doi.org/10.1021/jp034707u
  • Cakmak, S., Aycan, T., Yakan, H., Veyisoglu, A., Tanak, H. & Evecen, M. (2023). Preparation, spectroscopic, X-ray crystallographic, DFT, antimicrobial and ADMET studies of N-[(4-flourophenyl) sulfanyl]phthalimide. Acta Crystallographica Section C, 79(6), 249-256. https://doi.org/10.1107/S2053229623003418
  • Temel, E., Alaşalvar, C., Eserci, H. & Ağar, E. (2017). Experimental (X-ray, IR and UV–vis.) and DFT studies on cocrystallization of two tautomers of a novel Schiff base compound. Journal of Molecular Structure, 1128, 5-12. https://doi.org/10.1016/j.molstruc.2016.08.038
  • Xavier, R. J. & Dinesh, P. (2014). Spectroscopic (FTIR, FT-Raman, 13C and 1H NMR) investigation, molecular electrostatic potential, polarizability and first-order hyperpolarizability, FMO and NBO analysis of 1-methyl-2-imidazolethiol. Spectrochimica Acta Part A: Molecular and Biomolecular Spectroscopy, 118, 999-1011. https://doi.org/10.1016/j.saa.2013.09.120
  • Arshad, M. N., Asiri, A. M., Alamry, K. A., Mahmood, T., Gilani, M. A., Ayub, K. & Birinji, A. S. (2015). Synthesis, crystal structure, spectroscopic and density functional theory (DFT) study of N-[3-anthracen-9-yl-1-(4-bromo-phenyl)-allylidene]-N-benzenesulfonohydrazine. Spectrochimica Acta Part A: Molecular and Biomolecular Spectroscopy, 142, 364-374. https://doi.org/10.1016/j.saa.2015.01.101
  • Saka, E. T., Uzun, S. & Çağlar, Y. (2016). Synthesis, structural characterization, catalytic activity on aerobic oxidation of novel Co (II) and Fe (II) phthalocyanines and computational studies of 4-[2-(2, 3-dichlorophenoxy) ethoxy] phthalonitrile. Journal of Organometallic Chemistry, 810, 25-32. https://doi.org/10.1016/j.jorganchem.2016.03.005
  • Dani, R., Bharty, M., Kushawaha, S., Prakash, O., Singh, R. K. & Singh, N. (2013). Ni (II), Cu (II) and Zn (II) complexes of (Z)-N′(1, 3, 4-thiadiazol-2-yl) acetimidate: Synthesis, spectral, solid state electrical conductivity, X-ray diffraction and DFT study. Polyhedron, 65, 31-41. https://doi.org/10.1016/j.poly.2013.08.015
  • Luque, F. J., López, J. M. & Orozco, M. (2000). Perspective on “Electrostatic interactions of a solute with a continuum. A direct utilization of ab initio molecular potentials for the prevision of solvent effects”. Theoretical Chemistry Accounts, 103(3-4), 343-345. https://doi.org/10.1007/s002149900013
  • Ersanlı, C. C. (2017). Synthesis, X-ray and Quantum Chemical Characterizations Studies on (E)-2-Bromo-4-chloro-6-[(4-chloro-2, 5-dimethoxyphenylimino) methyl] phenol Compound. Gazi University Journal of Science, 30(4), 531-543.
  • Öztürk, F., Bulut, İ., Bekiroğlu, Y. & Bulut, A. (2016). Spectroscopic, structural, electrochemical and antimicrobiological studies of Cu (II)-sulfathiazole complex with diethylenetriamine ligand. Polyhedron, 119, 420-428. https://doi.org/10.1016/j.poly.2016.07.019
  • Al-Dawood, A. Y., El-Metwaly, N. M. & El-Ghamry, H. A. (2016). Molecular docking and DFT studies on some nano-meter binuclear complexes derived from hydrazine-carbothioamide ligand, synthesis, thermal, kinetic and spectral characterization. Journal of Molecular Liquids, 220, 311-323. https://doi.org/10.1016/j.molliq.2016.04.079
  • Aycan, T., Hekzaakua-bis(sulfat) içeren nikotinamitli kobalt(II) ve çinko(II) koordinasyon bileşikleri: sentezlenmesi, yapısal, spektroskopik ve termal özelliklerinin incelenmesi, in: C.C. Ersanlı, E. Tezel Ersanlı, C. Başlak (Eds.), Geleceğin Dünyasında Bilimsel ve Mesleki Çalışmalar 2020/ Fen Bilimleri I, Ekin Basım Yayın Dağıtım, Bursa, 2020, pp. 94-111.
  • Ranjith, P. K., Mary, Y. S., Panicker, C. Y., Anto, P. L., Armaković, S., Armaković, S. J., Musiol, R., Jampilek, J. & Van Alsenoy, C. (2017). New quinolone derivative: Spectroscopic characterization and reactivity study by DFT and MD approaches. Journal of Molecular Structure, 1135, 1-14. https://doi.org/10.1016/j.molstruc.2017.01.045
  • Kalarani, R., Sankarganesh, M., Kumar, G. V. & Kalanithi, M. (2020). Synthesis, spectral, DFT calculation, sensor, antimicrobial and DNA binding studies of Co (II), Cu (II) and Zn (II) metal complexes with 2-amino benzimidazole Schiff base. Journal of Molecular Structure, 1206, 127725. https://doi.org/10.1016/j.molstruc.2020.127725
  • Tabbì, G., Giuffrida, A. & Bonomo, R. P. (2013). Determination of formal redox potentials in aqueous solution of copper (II) complexes with ligands having nitrogen and oxygen donor atoms and comparison with their EPR and UV–Vis spectral features. Journal of Inorganic Biochemistry, 128, 137-145. https://doi.org/10.1016/j.jinorgbio.2013.07.035
  • Spackman, M. A. & Jayatilaka, D. (2009). Hirshfeld surface analysis. CrystEngComm, 11(1), 19-32. https://doi.org/10.1039/B818330A
  • Hirshfeld, F. (1977). Synthesis, crystal structure, and hirshfeld surface analysis of a new mixed ligand copper (II) complex. Theoretical Chemistry Accounts, 44, 129-138. https://doi.org/10.17344/acsi.2015.2024 Clausen, H. F., Chevallier, M. S., Spackman, M. A. & Iversen, B. B. (2010). Three new co-crystals of hydroquinone: crystal structures and Hirshfeld surface analysis of intermolecular interactions. New Journal of Chemistry, 34(2), 193-199. https://doi.org/10.1039/B9NJ00463G
  • Rohl, A. L., Moret, M., Kaminsky, W., Claborn, K., McKinnon, J. J. & Kahr, B. (2008). Hirshfeld surfaces identify inadequacies in computations of intermolecular interactions in crystals: pentamorphic 1, 8-dihydroxyanthraquinone. Crystal Growth and Design, 8(12), 4517-4525. https://doi.org/10.1021/cg8005212
  • Spackman, M. A. & McKinnon, J. J. (2002). Fingerprinting intermolecular interactions in molecular crystals. CrystEngComm, 4(66), 378-392. https://doi.org/10.1021/cg8005212
  • Parkin, A., Barr, G., Dong, W., Gilmore, C. J., Jayatilaka, D., McKinnon, J. J., Spackman, M. A. & Wilson, C. C. (2007). Comparing entire crystal structures: structural genetic fingerprinting. CrystEngComm, 9(8), 648-652. https://doi.org/10.1039/B704177B
  • Wolff, S., Grimwood, D., McKinnon, J., Turner, M., Jayatilaka, D. & Spackman, M. (2012). Crystal explorer, University of Western Australia Crawley, Australia.
  • Samanta, T., Dey, L., Dinda, J., Chattopadhyay, S. & Seth, S. (2014). Structural characterization and Hirshfeld surface analysis of a CoIIcomplex with imidazo [1, 2-a] pyridine. Journal of Molecular Structure, 1068, 58-70. https://doi.org/10.1107/S2056989018003857
  • Tailor, S. M. & Patel, U. H. (2015). Synthesis, spectroscopic characterization, antimicrobial activity and crystal structure of silver and copper complexes of sulfamethazine. Journal of Coordination Chemistry, 68(13), 2192-2207. https://doi.org/10.1080/00958972.2015.1055258
  • Hodgson, J. (2001). ADMET—turning chemicals into drugs. Nature Biotechnology, 19(8), 722-726. https://doi.org/10.1080/00958972.2015.1055258
  • Lipiński, E. (2001). Semitic languages: outline of a comparative grammar, Peeters Publishers.
  • İslamoğlu, F. & Hacıfazlıoğlu, E. (2022). Investigation of the usability of some triazole derivative compounds as drug active ingredients by ADME and molecular docking properties. Moroccan Journal of Chemistry,