Dust accumulation on photovoltaic modules: A review on the effective parameters

Reviewing the documents regarding the development of photovoltaic systems implies dust accumulation as one of the most significant challenges in arid regions with high solar potential. Moreover, the complexity of this phenomenon and its considerable impacts on the performance of photovoltaic systems, emphasize the need for thorough and comprehensive analysis. Therefore, the current study provided an extensive literature review regarding the parameters affecting dust accumulation. Through the research, the classification of the effective parameters, as well as their impacts on the soiling process on photovoltaic modules' surface, were determined in detail. Furthermore, an in depth and critical analysis of the state of the art, followed by identification of challenges for future researches, has been presented. The results of the current study can serve as a thorough reference for researchers, designers, and engineers who deal with photovoltaic systems in regions struggling with dust events such as the MENA region and, in particular, Iran.

___

  • [1] J. Pemndje, A. Ilinca, T. Rufin, T. Fongang, and R. Tchinda, Impact of Using Renewable Energy on the Cost of Electricity and Environment in Northern Cameroon, J. Renew. Energy Environ., vol. 3, no. 4, pp. 34–43, 2017.
  • [2] A. Esmaeli, An Intelligent PV Panel Structure to Extract the Maximum Power in Mismatch Irradiance, J. Renew. Energy Environ., vol. 2, no. 1, pp. 25–31, 2015.
  • [3] Scopus - Analyze search results. [Online]. Available: https://www-scopus-com. [Accessed: 28-Apr-2019].
  • [4] M. Gürtürk, H. Benli, and N. K. Ertürk, Determination of the effects of temperature changes on solar glass used in photovoltaic modules, Renew. Energy, vol. 145, no. July, pp. 711–724, Jan. 2020.
  • [5] M. Ameri and M. Yoosefi, Power and Fresh Water Production by Solar Energy, Fuel Cell, and Reverse Osmosis Desalination, J. Renew. Energy Environ., vol. 3, no. 1, pp. 25–34, 2016.
  • [6] E. Akrami, I. Khazaee, and A. Gholami, Comprehensive analysis of a multi-generation energy system by using an energy-exergy methodology for hot water, cooling, power and hydrogen production, Appl. Therm. Eng., vol. 129, pp. 995–1001, Oct. 2018.
  • [7] E. Akrami, A. Gholami, M. Ameri, and M. Zandi, Integrated an innovative energy system assessment by assisting solar energy for day and night time power generation: Exergetic and Exergo-economic investigation, Energy Convers. Manag., vol. 175, pp. 21–32, Nov. 2018.
  • [8] A. Gholami, A. Tajik, S. Eslami, and M. Zandi, Feasibility Study of Renewable Energy Generation Opportunities for a Dairy Farm, J. Renew. Energy Environ., vol. 6, no. 2, pp. 8–14, 2019.
  • [9] S. Eslami, A. Gholami, A. Bakhtiari, M. Zandi, and Y. Noorollahi, Experimental investigation of a multi-generation energy system for a nearly zero-energy park: A solution toward sustainable future, Energy Convers. Manag., vol. 200, no. May, p. 112107, Nov. 2019.
  • [10] Y. Gholami, A. Gholami, M. Ameri, and M. Zandi, Investigation of Applied Methods of Using Passive Energy In Iranian Traditional Urban Design, Case Study of Kashan, in 4th International Conference on Advances In Mechanical Engineering: ICAME 2018, 2018, pp. 3–12.
  • [11] S. Eslami, A. Gholami, H. Akhbari, M. Zandi, and Y. Noorollahi, Solar-Based Multi-Generation Hybrid Energy System; Simulation and Experimental Study, Int. J. Ambient Energy, pp. 1–25, Jun. 2020.
  • [12] A. Gholami et al., A Review of the Effect of Dust on the Performance of Photovoltaic Panels, Iran. Electr. Ind. J. Qual. Product., vol. 8, no. 15, pp. 93–102, 2019.
  • [13] A. A. Salim, F. S. Huraib, and N. N. Eugenio, PV power-study of system options and optimization, in EC photovoltaic solar conference. 8, 1988, pp. 688–692.
  • [14] A. H. Hassan, U. A. Rahoma, H. K. Elminir, and A. M. Fathy, Effect of airborne dust concentration on the performance of PV modules, J. Astron. Soc. Egypt, vol. 13, no. 1, pp. 24–38, 2005.
  • [15] D. Goossens and E. Van Kerschaever, Aeolian dust deposition on photovoltaic solar cells: the effects of wind velocity and airborne dust concentration on cell performance, Sol. Energy, vol. 66, no. 4, pp. 277–289, 1999.
  • [16] Z. I. Offer and D. Goossens, Airborne dust in the Northern Negev Desert (January–December 1987): general occurrence and dust concentration measurements, J. Arid Environ., vol. 18, no. 1, pp. 1–19, Jan. 1990.
  • [17] H. Hottel and B. Woertz, Performance of flat-plate solar-heat collectors, Trans. ASME (Am. Soc. Mech. Eng.);(United States), vol. 64, 1942.
  • [18] A. M. Zarem and D. D. Erway, Introduction to the utilization of solar energy. Whitefish MT, United States: Literary Licensing, LLC, 2012, 1963.
  • [19] J. J. Michalsky, R. Perez, R. Stewart, B. A. LeBaron, and L. Harrison, Design and development of a rotating shadowband radiometer solar radiation/daylight network, Sol. Energy, vol. 41, no. 6, pp. 577–581, 1988.
  • [20] P. Ferrada et al., Physicochemical characterization of soiling from photovoltaic facilities in arid locations in the Atacama Desert, Sol. Energy, vol. 187, no. April, pp. 47–56, Jul. 2019.
  • [21] A. Gholami, M. Ameri, M. Zandi, R. G. Ghoachani, S. Eslami, and S. Pierfederici, Photovoltaic Potential Assessment and Dust Impacts on Photovoltaic Systems in Iran: Review Paper, IEEE J. Photovoltaics, vol. 10, no. 3, pp. 824–837, May 2020.
  • [22] S. A. M. Said, G. Hassan, H. M. Walwil, and N. Al-Aqeeli, The effect of environmental factors and dust accumulation on photovoltaic modules and dust-accumulation mitigation strategies, Renew. Sustain. Energy Rev., vol. 82, no. May 2017, pp. 743–760, Feb. 2018.
  • [23] P. Piedra and H. Moosmüller, Optical losses of photovoltaic cells due to aerosol deposition: Role of particle refractive index and size, Sol. Energy, vol. 155, no. July, pp. 637–646, Oct. 2017.
  • [24] T. R. B. and R. G. H. Qasem*, Effect of Shading Caused by Dust on Cadmıum Telluride\nphotovoltaic Modulel, 2011.
  • [25] S. A. M. Said and H. M. Walwil, Fundamental studies on dust fouling effects on PV module performance, Sol. Energy, vol. 107, pp. 328– 337, Sep. 2014.
  • [26] R. Appels et al., Effect of soiling on photovoltaic modules, Sol. Energy, vol. 96, pp. 283–291, Oct. 2013.
  • [27] R. Appels, B. Muthirayan, A. Beerten, R. Paesen, J. Driesen, and J. Poortmans, The effect of dust deposition on photovoltaic modules, in 2012 38th IEEE Photovoltaic Specialists Conference, 2012, no. June, pp. 001886–001889.
  • [28] N. Bouaouadja, S. Bouzid, M. Hamidouche, C. Bousbaa, and M. Madjoubi, Effects of sandblasting on the efficiencies of solar panels, Appl. Energy, vol. 65, no. 1–4, pp. 99–105, Apr. 2000.
  • [29] G. A. Mastekbayeva and S. Kumar, Effect of dust on the transmittance of low density polyethylene glazing in a tropical climate, Sol. Energy, vol. 68, no. 2, pp. 135–141, Feb. 2000.
  • [30] S. L. O'Hara, M. L. Clarke, and M. S. Elatrash, Field measurements of desert dust deposition in Libya, Atmos. Environ., vol. 40, no. 21, pp. 3881–3897, 2006.
  • [31] A. O. Mohamed and A. Hasan, Effect of dust accumulation on performance of photovoltaic solar modules in Sahara environment, J. Basic Appl. Sci. Res., vol. 2, no. 11, pp. 11030–11036, 2012.
  • [32] H. A. Kazem and M. T. Chaichan, Experimental analysis of the effect of dust's physical properties on photovoltaic modules in Northern Oman, Sol. Energy, vol. 139, pp. 68–80, Dec. 2016.
  • [33] J. Wang, H. Gong, and Z. Zou, Modeling of Dust Deposition Affecting Transmittance of PV Modules, J. Clean Energy Technol., vol. 5, no. 3, pp. 217–221, May 2017.
  • [34] M. S. El-Shobokshy, A. Mujahid, and A. K. M. Zakzouk, Effects of dust on the performance of concentrator photovoltaic cells, IEE Proc. I Solid State Electron Devices, vol. 132, no. 1, p. 5, 1985.
  • [35] M. J. Adinoyi and S. A. M. M. Said, Effect of dust accumulation on the power outputs of solar photovoltaic modules, Renew. energy, vol. 60, pp. 633–636, Dec. 2013.
  • [36] H. K. Elminir, A. E. Ghitas, R. H. Hamid, F. El-Hussainy, M. M. Beheary, and K. M. Abdel-Moneim, Effect of dust on the transparent cover of solar collectors, Energy Convers. Manag., vol. 47, no. 18–19, pp. 3192–3203, Nov. 2006.
  • [37] A. Gholami, I. Khazaee, S. Eslami, M. Zandi, and E. Akrami, Experimental investigation of dust deposition effects on photo-voltaic output performance," Sol. Energy, vol. 159, pp. 346–352, 2018.
  • [38] A. . Modaihsh, "Characteristics and composition of the falling dust sediments on Riyadh city, Saudi Arabia, J. Arid Environ., vol. 36, no. 2, pp. 211–223, Jun. 1997.
  • [39] W. Javed, Y. Wubulikasimu, B. Figgis, and B. Guo, Characterization of dust accumulated on photovoltaic panels in Doha, Qatar, Sol. Energy, vol. 142, no. December 2016, pp. 123–135, Jan. 2017.
  • [40] K. J. McLean, Cohesion of precipitated dust layer in electrostatic precipitators, J. Air Pollut. Control Assoc., vol. 27, no. 11, pp. 1100–1103, 1977.
  • [41] X. Zhang, F. Shi, J. Niu, Y. Jiang, and Z. Wang, Superhydrophobic surfaces: from structural control to functional application, J. Mater. Chem., vol. 18, no. 6, pp. 621–633, 2008.
  • [42] L. Jing, Z. Zhi-Jun, Y. Ji-Lin, and B. Yi-Long, A Thin Liquid Film and Its Effects in an Atomic Force Microscopy Measurement, Chinese Phys. Lett., vol. 26, no. 8, p. 086802, Aug. 2009.
  • [43] L. K. Verma et al., Self-cleaning and antireflective packaging glass for solar modules, Renew. Energy, vol. 36, no. 9, pp. 2489–2493, Sep. 2011.
  • [44] S. Mekhilef, R. Saidur, and M. Kamalisarvestani, Effect of dust, humidity and air velocity on efficiency of photovoltaic cells, Renew. Sustain. Energy Rev., vol. 16, no. 5, pp. 2920–2925, Jun. 2012.
  • [45] A. Kumar, T. Staedler, and X. Jiang, Role of relative size of asperities and adhering particles on the adhesion force, J. Colloid Interface Sci., vol. 409, pp. 211–218, 2013.
  • [46] P. G. C. Petean and M. L. Aguiar, Determining the adhesion force between particles and rough surfaces, Powder Technol., vol. 274, pp. 67–76, 2015.
  • [47] M. Corn, The Adhesion of Solid Particles to Solid Surfaces II, J. Air Pollut. Control Assoc., vol. 11, no. 12, pp. 566–584, 1961.
  • [48] G. W. Penney and E. H. Klingler, Contact potentials and the adhesion of dust, Trans. Am. Inst. Electr. Eng. Part I Commun. Electron., vol. 81, no. 3, pp. 200–204, 1962.
  • [49] P. Somasundaran, H. K. Lee, E. D. Shchukin, and J. Wang, Cohesive force apparatus for interactions between particles in surfactant and polymer solutions, Colloids Surfaces A Physicochem. Eng. Asp., vol. 266, no. 1–3, pp. 32–37, Sep. 2005.
  • [50] L. Kazmerski, S. C. Costa, M. Machado, and A. S. A. C. Diniz, Dust in the wind: Soiling of solar devices : Is there a Holy Grail solution? (Conference Presentation), 2016, vol. 9938, p. 993807.
  • [51] L. L. Kazmerski et al., Fundamental Studies of Adhesion of Dust to PV Module Surfaces: Chemical and Physical Relationships at the Microscale, IEEE J. Photovoltaics, vol. 6, no. 3, pp. 719–729, May 2016.
  • [52] G. Hassan, B. S. Yilbas, S. A. M. Said, N. Al-Aqeeli, and A. Matin, Chemo-Mechanical Characteristics of Mud Formed from Environmental Dust Particles in Humid Ambient Air, Sci. Rep., vol. 6, no. 1, p. 30253, Sep. 2016.
  • [53] B. S. Yilbas et al., Characterization of Environmental Dust in the Dammam Area and Mud After-Effects on Bisphenol-A Polycarbonate Sheets, Sci. Rep., vol. 6, no. 1, p. 24308, Jul. 2016.
  • [54] H. Zhang, X. Li, C. Du, and H. Qi, Corrosion behavior and mechanism of the automotive hot-dip galvanized steel with alkaline mud adhesion, Int. J. Miner. Metall. Mater., vol. 16, no. 4, pp. 414–421, Aug. 2009.
  • [55] Z. Jie, Z. Chuande, Z. Fuzhong, L. Shuhua, F. Miao, and T. Yike, Experimental and numerical modeling of particle levitation and movement behavior on traveling-wave electric curtain for particle removal, Part. Sci. Technol., vol. 37, no. 6, pp. 737–745, Aug. 2019.
  • [56] B. S. Yilbas, G. Hassan, H. Ali, and N. Al-Aqeeli, Environmental dust effects on aluminum surfaces in humid air ambient, Sci. Rep., vol. 7, no. 1, p. 45999, Dec. 2017.
  • [57] M. Piliougine et al., Comparative analysis of energy produced by photovoltaic modules with anti-soiling coated surface in arid climates, Appl. Energy, vol. 112, pp. 626–634, Dec. 2013.
  • [58] A. Bianchini, M. Gambuti, M. Pellegrini, and C. Saccani, Performance analysis and economic assessment of different photovoltaic technologies based on experimental measurements, Renew. Energy, vol. 85, pp. 1–11, Jan. 2016.
  • [59] N. M. Nahar and J. P. Gupta, Effect of dust on transmittance of glazing materials for solar collectors under arid zone conditions of India, Sol. Wind Technol., vol. 7, no. 2–3, pp. 237–243, Jan. 1990.
  • [60] K. Brown, T. Narum, and N. Jing, Soiling test methods and their use in predicting performance of photovoltaic modules in soiling environments, in 2012 38th IEEE Photovoltaic Specialists Conference, 2012, pp. 001881–001885.
  • [61] A. Gholami, A. A. Alemrajabi, and A. Saboonchi, Experimental study of self-cleaning property of titanium dioxide and nanospray coatings in solar applications, Sol. Energy, vol. 157, pp. 559–565, Nov. 2017.
  • [62] A. Gholami, S. Eslami, A. Tajik, M. Ameri, R. Gavagsaz Ghoachani, and M. Zandi, A review of dust removal methods from the surface of photovoltaic panels, Mech. Eng. Sharif J., vol. 35, no. 2, pp. 117–127, Dec. 2019.
  • [63] J. R. Gaier, M. E. Perez-Davis, and M. Marabito, Aeolian removal of dust from photovoltaic surfaces on Mars, 1990.
  • [64] J. R. Gaier and M. E. Perez-davis, Effect of Particle Size of Martian Dust on the Degradation of Photovoltaic Cell Performance, in International Solar Energy Conference, 1992, no. April 4-8, pp. 1–17.
  • [65] B. M. A. Mohandes, L. El-Chaar, and L. A. Lamont, Application study of 500 W photovoltaic (PV) system in the UAE, Appl. Sol. Energy, vol. 45, no. 4, pp. 242–247, Dec. 2009.
  • [66] F. Touati, M. Al-Hitmi, and H. Bouchech, Towards understanding the effects of climatic and environmental factors on solar PV performance in arid desert regions (Qatar) for various PV technologies, in 2012 First International Conference on Renewable Energies and Vehicular Technology, 2012, pp. 78–83.
  • [67] E. Boykiw, The effect of settling dust in the Arava Valley on the performance of solar photovoltaic panels. The Senior Thesis in Department of Environmental Science Allegheny College Meadville, Pennsylvania, USA, 36 pp., 2011.
  • [68] A. Ibrahim, Effect of shadow and dust on the performance of silicon solar cell, J. Basic Appl. Sci. Res., vol. 1, no. 3, pp. 222–230, 2011.
  • [69] A. A. Hegazy, Effect of dust accumulation on solar transmittance through glass covers of plate-type collectors, Renew. Energy, vol. 22, no. 4, pp. 525–540, Apr. 2001.
  • [70] A. Gholami, A. Saboonchi, and A. A. Alemrajabi, Experimental study of factors affecting dust accumulation and their effects on the transmission coefficient of glass for solar applications, Renew. Energy, vol. 112, pp. 466–473, Nov. 2017.
  • [71] Y. Callot, B. Marticorena, G. Bergametti, and D. De, Geomorphologic approach for modelling the surface features of arid environments in a model of dust emissions: application to the Sahara desert, Geodin. Acta, vol. 13, no. 5, pp. 245–270, Oct. 2000.
  • [72] G. He, C. Zhou, and Z. Li, Review of Self-Cleaning Method for Solar Cell Array, Procedia Eng., vol. 16, pp. 640–645, 2011.
  • [73] D. Goossens, Z. Y. Offer, and A. Zangvil, Wind tunnel experiments and field investigations of eolian dust deposition on photovoltaic solar collectors, Sol. Energy, vol. 50, no. 1, pp. 75–84, Jan. 1993.
  • [74] H. A. AlBusairi and H. J. Möller, Performance evaluation of CdTe PV modules under natural outdoor conditions in Kuwait, in 25th European Solar Energy Conference and Exhibition/5th World Conference on Photovoltaic Energy Conversion, Valencia, Spain, September, 2010, pp. 6–10.
  • [75] A. Rouholamini, H. Pourgharibshahi, R. Fadaeinedjad, and G. Moschopoulos, Optimal tilt angle determination of photovoltaic panels and comparing of their mathematical model predictions to experimental data in Kerman, in Electrical and Computer Engineering (CCECE), 2013 26th Annual IEEE Canadian Conference on, 2013, pp. 1–4.
  • [76] P. Talebizadeh, M. A. Mehrabian, and M. Abdolzadeh, Prediction of the optimum slope and surface azimuth angles using the genetic algorithm, Energy Build., vol. 43, no. 11, pp. 2998–3005, 2011.
  • [77] E. G. Luque, F. Antonanzas-Torres, and R. Escobar, Effect of soiling in bifacial PV modules and cleaning schedule optimization, Energy Convers. Manag., vol. 174, no. August, pp. 615–625, 2018.
  • [78] A. Abotaleb and A. Abdallah, Performance of bifacial-silicon heterojunction modules under desert environment, Renew. Energy, vol. 127, pp. 94–101, Nov. 2018.
  • [79] S. Bhaduri and A. Kottantharayil, Mitigation of Soiling by Vertical Mounting of Bifacial Modules, IEEE J. Photovoltaics, vol. 9, no. 1, pp. 240–244, Jan. 2019.