Improvement of mechanical behaviour of wind turbine blade using nanofluid graphene and/or glass fiber in epoxy resin

Extraordinary properties of composite materials have made them center of extensive researches. By blending nanofluids with conventional reinforced materials, composites with superior properties are produced than ordinary composites. In this experimentally based study, it is focused on the improvement of nanocomposites using graphene particles in epoxy resin. Additionally, it is aimed to improve nanocomposites by using glass fiber and graphene reinforced epoxy resin. For this purpose, 0.4 mg/ mL and 0.8 mg/mL graphene oxide nanoparticles were added to the epoxy resin fluid and graphene oxide with same rates and glass fiber nanoparticles were added to the epoxy system. After the manufacturing process, longitudinal and transverse tensile, longitu dinal and transverse compression and three point bending tests were performed. By considering this twofold influence, the mechanical properties of graphene/epoxy resin were higher than epoxy resin. According to the obtained experimental data, it was found that the tensile and bending strengths of the graphene reinforced epoxy nanocomposites increased and the graphene improves the epoxy based composite’s mechanical properties.

___

  • [1] Ravindra B. S., Yogesh S. M. (2015). Review of Wind Energy Development and Policy in India. Energy Technology and Policy, 2, 122–132.
  • [2] Genç, M. S. & Gökçek, M. (2009). Evaluation of wind characteristics and energy potential in Kayseri, Turkey. Journal of Energy Engineering, 135(2), 33-43. https://ascelibrary.org/doi/abs/10.1061/(ASCE)0733-9402(2009)135:2(33).
  • [3] Genç, M. S. (2011). Economic viability of water pumping systems supplied by wind energy conversion and diesel generator systems in north central Anatolia, Turkey. Journal of Energy Engineering, 137(1), 21-35.
  • [4] Http://www.elder.org.tr/ebulten/bulten236.html.
  • [5] Genç, M. S., Koca K., Açıkel H. H. (2019). Investigation of Pre-Stall Flow Control on Wind Turbine Blade Airfoil Using Roughness Element. Energy, 176, 320-334. https://www.sciencedirect.com/science/article/abs/pii/S0360544219305997.
  • [6] Açıkel H. H. & Genç, M. S. (2018). Control of Laminar Separation Bubble over Wind Turbine Airfoil Using Partial Flexibility on Suction Surface. Energy, 165, 176-190. https://www.sciencedirect.com/science/article/abs/pii/S0360544218318000.
  • [7] Koca K., Genç, M. S., Açıkel H.H., Çağdaş M., Bodur T.M. (2018). Identification of Flow Phenomena over NACA 4412 Wind Turbine Airfoil at Low Reynolds Numbers and Role of Laminar Separation Bubble on Flow Evolution, Energy, 144, 750-764. https://www.sciencedirect.com/science/article/abs/pii/S0360544217320789.
  • [8] Genç, M. S., Açıkel H.H., Akpolat M.T., Özkan G., Karasu İ. (2016). Acoustic control of flow over NACA 2415 aerofoil at low Reynolds numbers. Journal of Aerospace Engineering-ASCE, 29(6), 04016045. https://link.springer.com/chapter/10.1007/978-3-319-34181-1_31.
  • [9] Açıkel H. H., Genç, M. S. (2016). Flow control with perpendicular acoustic forcing on NACA 2415 aerofoil at low Reynolds numbers. Proc IMechE, Part G-Journal of Aerospace Engineering, 230, 2447-2462. https://journals.sagepub.com/doi/abs/10.1177/0954410015625672.
  • [10] Genç M. S., Kaynak Ü., Lock G. D, Flow over an Aerofoil without and with Leading Edge Slat at a Transitional Reynolds Number, Proc IMechE, Part G-Journal of Aerospace Engineering 2009, 223(G3):217-231. https://journals.sagepub.com/doi/abs/10.1243/09544100JAERO434.
  • [11] Genç M. S., Özkan G., Özden M., Kırış M. S., Yıldız R., Interaction of tip vortex and laminar separation bubble over wings with different aspect ratios under low Reynolds numbers, Proceedings of the Institution of Mechanical Engineers Part C-Journal of Mechanical Engineering Science 2018; vol.232: pp.4019-4037 https://journals.sagepub.com/doi/abs/10.1177/0954406217749270.
  • [12] Karasu İ., Özden M., Genç M. S., Performance Assessment of Transition Models for 3D flow over NACA4412 wings at low Reynolds numbers, Journal of Fluids Engineering-Transactions of the ASME, vol.140 (12), pp.121102-1-121102-15, 2018. https://asmedigitalcollection.asme.org/fluidsengineering/article-abstract/140/12/121102/367075/Performance-Assessment-of-Transition-Models-for?redirectedFrom=fulltext
  • [13] Mishnaevsky Jr, L. (2019). Toolbox for optimizing anti erosion protective coatings of wind turbine blades: Overview of mechanisms and technical solutions, Wind Energy, 22(11), 1636-1653. https://onlinelibrary.wiley.com/doi/full/10.1002/we.2378.
  • [14] Apalak, Z. G., Apalak, M. K. and Genç, M. S. (2006) Progressive damage modeling of an adhesively bonded unidirectional composite single-lap joint in tension at the mesoscale level, Journal of Thermoplastic Composite Materials, 19(6), 671-702. https://journals.sagepub.com/doi/abs/10.1177/0892705706067487.
  • [15] Apalak, Z. G., Apalak, M. K. and Genç, M. S. (2007) Progressive damage modeling of an adhesively bonded composite single lap joint under flexural loads at the mesoscale level, Journal of Reinforced Plastics and Composites, 26(9), 903-953.
  • [16] Karabağ. S. (2011) Rüzgâr Türbini Kanadı İmalatı, İzmir Rüzgâr Sempozyumu ve Sergisi, Aralık.
  • [17] Xie, W., Zhao, D., Jing, L., & Zhang, F. (2012). Preparation and mechanical properties of graphene reinforced epoxy resin matrix composites. Polymer Materials Science & Engineering, 9. https:// http://en.cnki.com.cn/Article_en/CJFDTotal-GFZC201209034.htm.
  • [18] Subaşi, A., Zurnaci, M., Kahyaoğlu, A., & Demir, E. (2017). Polyester/Grafen Kompozitlerin Mekanik ve Termal Özelliklerinin İncelenmesi. Science and Engineering, 4(3), 472-481. https://www.researchgate.net/profile/Merve_Zurnaci2/publication/322684529_PolyesterGrafen_Kompozitlerin_Mekanik_ve_Termal_Ozelliklerinin_Incelenmesi/links/5a68b5d14585156abd00c90b/Polyester-Grafen-Kompozitlerin-Mekanik-ve-Termal-Oezelliklerinin-Incelenmesi.pdf.
  • [19] Ghorbani, A. (2014) Properti̇es of carbon fi̇ber rei̇nforced graphene/epoxy nanocomposi̇tes, MS THESIS, Ege University, İzmir.
  • [20] Altürk, E., Süper Malzeme Grafen, PAGEV Dergisi. (Sayısı, yayınlanma yılı).
  • [21] Şenel, C. M., Gürbüz, M., Koç, E. (2015) Grafen Takviyeli Alüminyum Matrisli Yeni Nesil Kompozitler, Mühendis ve Makina, cilt 56, sayı 669, s. 36-47. https://www.researchgate.net/profile/Mevlut-Gurbuz/publication/285593556_Grafen_Takviyeli_Aluminyum_Matrisli_Yeni_Nesil_Kompozitler/links/5661692b08ae15e7462c4d8d/Grafen-Takviyeli-Alueminyum-Matrisli-Yeni-Nesil-Kompozitler.pdf.
  • [22] Mishnaevsky, L., Branner, K., Petersen, H. N., Beauson, J., McGugan, M., & Sørensen, B. F. (2017). Materials for Wind Turbine Blades: An Overview, Materials, 10(11), 1285. https://www.mdpi.com/1996-1944/10/11/1285.
  • [23] Callister, W. D., & Rethwisch, D. G. (2007). Materials Science and Engineering: An Introduction (Vol. 7, pp. 665-715). New York: John wiley & sons. https://oheg.org/hipo.pdf.
  • [24] Steigmann, R., Savin, A., Goanta, V., Barsanescu, P. D., Leitoiu, B., Iftimie, N., Curtu, I. (2016) Determination of mechanical properties of some glass fiber reinforced plastics suitable to Wind Turbine Blade construction. In IOP Conference Series: Materials Science and Engineering (Vol. 147, No. 1, p. 012140). IOP Publishing. Duffie JA, Beckman WA. Solar Engineering of Thermal Processes. 2nd ed. New York: John Wiley & Sons; 1991. https://iopscience.iop.org/article/10.1088/1757-899X/147/1/012140/meta.