Thermococcus gorgonius DNA Polimerazının Rekombinant Olarak Üretimi

Termostabil bir enzim olan Tgo DNA polimeraz hipertermofilik bir arkea olan Thermococcus gorgonarius tarafından sentezlenmektedir. Çalışmamızda 3’-5’ ekzonükleaz aktivitesiyle yüksek kalitede DNA sentezi gerçekleştiren Tgo DNA polimeraz, rekombinant olarak üretimi hedeflenmiştir. Bu amaçla, ürettirilen yapay gen uygun restriksiyon enzimleri ile kesilip aynı enzimlerle kesilmiş olan pET28a vektör sistemine ligasyon ile birleştirilmiştir. E. coli BL21 hücrelerinde eksprese edilen enzim aktivitesi, PCR reaksiyonu gerçekleştirilerek kontrol edilmiştir.

Recombinant DNA Polymerase Production of Thermococcus gorgonarius

A thermostable enzyme Tgo DNA polymerase was produced by a hyperthermophilic archaea, Thermococcus gorgonarius. In this study, it was aimed to produce the Tgo DNA polymerase which synthesizes highly qualified DNA by its 3’-5’-exonuclease activity, by recombinant DNA technology. For this purpose, synthesized synthetic DNA was cut with restriction enzymes and ligated into a pET28a vector. The activity of the enzyme expressed in E. coli BL21 was controlled by PCR reaction.

___

  • Banach-Orlowska M, Fijalkowska IJ, Schaaper RM, Jonczyk P (2005). DNA polymerase II as a fidelity factor in chromosomal DNA synthesis in Escherichia coli. Mol Microbiol 58(1): 61-70.
  • Fijalkowska IJ, Schaaper RM, Jonczyk P (2012). DNA replication fidelity in Escherichia coli: a multi-DNA polymerase affair. FEMS Microbiol Rev 36(6): 1105-1121.
  • Gawel D, Pham PT, Fijalkowska IJ, Jonczyk P, Schaaper RM (2008). Role of accessory DNA polymerases in DNA replication in Escherichia coli: analysis of the dnaX36 mutator mutant. J Bacteriol 190(5): 1730-42.
  • Grogan DW (2015). Understanding DNA repair in hyperthermophilic archaea: persistent gaps and other reasons to focus on the fork. Archaea 2015: 942605.
  • Hopfner KP, Eichinger A, Engh RA, Laue F, Ankenbauer W, Huber R, Angerer B (1999). Crystal structure of a thermostable type B DNA polymerase from Thermococcus gorgonarius. Proc Natl Acad Sci Biochemistry 96(7): 3600–3605.
  • Ishino S and Ishino Y (2014). DNA polymerases as useful reagents for biotechnology – the history of developmental research in the field. Front Microbiol 5: 465.
  • Jozwiakowski SK, Keith BJ, Gilroy L, Doherty AJ, Connolly BA (2014). An archaeal family-B DNA polymerase variant able to replicate past DNA damage: occurrence of replicative and translesion synthesis polymerases within the B family. Nucl Acids Res 42(15): 9949–9963.
  • Kovalskaya N, Owensa R, Bakera CJ, Deahl K, Hammond RW (2014) Application of a modified EDTA-mediated exudation technique and guttation fluid analysis for potato spindle tuber viroid RNA detection in tomato plants (Solanum lycopersicum). J Virol Methods 198: 75–81.
  • Mitchell KJ, Wood JR, Llamas B, Patricia A, McLenachan PA, Kardailsky O, Scofield RP, Worthy TH, Cooper A (2016). Ancient mitochondrial genomes clarify the evolutionary history of New Zealand’s enigmatic acanthisittid wrens. Mol Phylogenetics Evol 102: 295–304.
  • Sambrook J and Russell DW (2001). Molecular cloning. A laboratory manual, Cold Spring Harbor Laboratory Press.
  • Yang YL and Polisky B (1993). Suppression of ColEl high-copy-number mutants by mutations in the polA gene of Escherichia coli. J Bacteriol 175: 428-437
  • Zhang L, Kang M, Xu J, Huang Y (2015) Archaeal DNA polymerases in biotechnology. Appl Microbiol Biotechnol 99: 6585–6597.