Merluccius merluccius L.’un Total Yağ Asidi Kompozisyonunda Mevsimsel Değişiklikler

Bu çalışmada sonbahar ve ilkbaharda Marmara Denizi’nden alınan Merluccius merluccius L. total yağ asit kompozisyonu gaz kromatografik yöntemle araştırılmıştır. Palmitik asit (C16:0), stearik asit (C18:0), oleik asit (C18:1) ve dokosaheksaenoik asit (C22:6) majör yağ asitleri olarak bulunmuştur. Her iki mevsimde balık kaslarında doymuş yağ asitleri (SFA), doymamış (MUFA) ve aşırı doymamış yağ asitlerinden (PUFA) daha yüksek bulunmuştur. Tavuk balığında, C20:5-ω3 ve C22:6 içeriği toplam yağ asidinde sırasıyla %5.76’dan (sonbahar) %7.33’e (ilkbahar) ve %14.84’den (sonbahar), %25.97’ye (ilkbahar) değişmektedir. Balık dokularındaki yağ asidi bileşimi diyet, boyut, yaş, üreme periyodu, tuzluluk, sıcaklık, mevsim ve coğrafi konumdan etkilenmektedir. M. merluccius yağ asidi bakımından insan tüketimi için değerli bir besin olabilir.
Anahtar Kelimeler:

Balık, yağ asidi bileşimi

Seasonal changes in the total fatty acid composition of Merluccius merluccius L.

In this study, total fatty acid composition of Merluccius merluccius from Marmara Sea, in autumn and spring was investigated by gas chromatographic method. Palmitic acid (C16:0), stearic acid (C18:0), oleic acid (C18:1) and docosahexaenoic acid (C22:6), were identified as the major fatty acid constituents. Saturated fatty acids (SFAs) were found to be higher than polyunsaturated fatty acids (PUFAs) and monounsaturated fatty acids (MUFAs) in the fish muscle in both seasons. The contents of C20:5-ω3 and C22:6 in total fatty acid in the European hake ranged from 5.76% (autumn) to 7.33 % (spring) and from 14.84% (autumn) to 25.97% (spring), respectively. Total fatty acid compositions of fish tissues can be affected by diet, size, age, reproductive cycle, salinity, temperature, season and geographical location. M. merluccius may be a valuable food for human consumption in terms of fatty acids.

___

  • Celik M, Diler A, Kücükgülmez A (2005). A comparison of the proximate compositions and fatty acid profiles of zander (Sander lucioperca) from two different regions and climatic conditions. Food Chemistry 92: 637-641.
  • Chen IC, Chapman FA, Wei C-I, Porteir KM, O’Keefe SF (1995). Differentiation of cultured and wild sturgeon (Acipencer axyrinchus desotoi) based on fatty acid composition. Journal of Food Science 60(3): 631-635.
  • Eder K (1995). Gas chromatographic analysis of fatty acid methyl esters. Journal of Chromatography B 671: 113-131.
  • Folch J, Lees M, Sloane Stanley GH (1957). A simple method for the isolation and purification of total lipids from animal tissues. Journal of Biological Chemistry 226: 497-509.
  • Güler GO, Kıztanır B, Aktümsek A, Citil OB, Özparlak H (2008). Determination of the seasonal changes on total fatty acid composition and ω3/ ω6 ratios of carp (Cyprinus carpio L.) muscle lipids in Beysehir Lake (Turkey). Food Chemistry 108: 689-694.
  • Hibbeln JR (1998). Fish consumption and major depression. Lancet 351: 1213.
  • Inhamuns AJ, Franco MRB (2008). EPA and DHA quantification in two species of freshwater fish from Central Amazonia. Food Chemistry 107: 587-591.
  • Kinsella JE, Lokesh B, Stone RA (1990). Dietary n-3 polyunsaturated fatty acids and amelioration of cardiovascular diease:possible mechanisms. American Journal of Clinical Nutrition 52(1): 1-28.
  • Küçükgülmez A, Çelik M, Ersoy B, Yanar Y, Sangün L (2008). Seasonal variations in proximate and fatty acid compositions of two commercially important fish, hake (Merluccius merluccius) and lizardfish (Saurida undosquamis), from the Northeastern Mediterranean Sea. Journal of Muscle Foods 352-361.
  • Maes M, Christophe AB, Delanghe J, Altamura C, Neels H, Meltzer HY (1999). Lowered omega3 polyunsaturated fatty acids in serum phospholipids and cholesteryl esters of depressed patients. Psychiatr Res 85: 275-291.
  • Martino RC, Cruz GM (2004). Proximate composition and fatty acid content of Mangrove oyster Crassostrea rhizophorae along the year seasons. Braz Arch Biol Technology 47: 955-960.
  • Moss CW, Lambert MA, Merwin, WH (1974). Comparison of rapid methods for analysis of bacterial fatty acids. Applied Microbiology 28: 80-85.
  • Norrobin MF, Olsen RE, Tande KS (1990). Seasonal variation in lipid class and fatty acid composition of two small copepods in Balsfjorden, Northern Norway. Marine Biology 105: 205-211.
  • Pigott GM, Tucker BW (1990). Effects of technology on nutrition. New York: Marcel Dekker.
  • Rahman SA, Huah TS, Hassan O, Daud NM (1995). Fatty acid composition of some Malaysian freswater fish. Food Chemistry 54(1): 45-49.
  • Roncarati A, Brambilla G, Meluzzi A, Iamiceli AL, Fanelli R, Moret R, Ubaldi A, Miniero R, Sirri F, Melotti P, di Domenico A (2012). Fatty acids profile and proximate composition of fillets from Engraulis encrasicholus, Mullus barbatus, Merluccius merluccius and Sarda sarda caught in Tyrrhenian, Adriatic and Ionian seas. Journal of Applied Ichthyology 28: 545-552.
  • Sargent JR (1996). Origins and functions of egg lipid. In N.R. Bromage and R.J. Roberts (Eds.), Broodstock management and egg and larval quality (pp. 353-372). Oxford: Blackwell.
  • Sargent JR (1997). Fish oils and human diet. British Journal of Nutrition 78: 5-13.
  • Sheridan MA (1988). Lipid dynamics in fish: Aspects of absorption, transportation, deposition and mobilization. Comparative Biochemistry and Physiology 90: 679-690.
  • Telahigue K, Hajji T, Rabeh I, El Cafsi M (2013). The changes of fatty acid composition in sun dried, oven dried and frozen hake (Merluccius merluccius) and sardinella (Sardinella aurita). African Journal of Biochemistry Research 7(8): 158-164.
  • Wang YJ, Miller LA, Peren M, Addis PB (1990). Omega-3 fatty acids in lake superior fish. Journal of Food Science 55(1): 71-73.