Kaliks[4]aren Nanopartikül Bazlı Modifiye Katı Elektrot Yüzeyleri Kullanılarak Cd(II) nin Voltametrik Tayini

Ağır metal kirliliği insan sağlığı, canlı kaynaklara ve ekolojik sistemleri için ciddi bir tehdit haline gelmiştir. Bu nedenle ağır metallerin tayini oldukça önemlidir. Bu çalışmada; ağır metal iyonlarının kolayca tayin edilebilmesi için, nanopartikül temelli metal sensör hazırlanmıştır. Nanopartikül olarak yeni sentezlenen kaliksarenlefonksiyonlandırılmış çok duvarlı karbon nanotüp kullanılarak katı yüzey elektrotlar hazırlanmış, hazırlanan yüzeylerde metal tayinin yapılabilmesi için yeni bir yöntem geliştirilmiştir. Hazırlanan CNT-Calix-Cra/GCE elektrodun çalışmada analizi yapılması istenilen Cd(II) iyonuna karşı performansını belirlemek için belli aralıkta hazırlanan standart Cd(II) iyonuna karşı SWASV( kare dalda anodik sıyırma) voltammogram grafikleri elde edilmiştir. Duyarlılıkları ve çalışma aralıkları incelendiğinde modifiye edilmiş olan elektrodun Cd(II) duyarlılığının daha yüksek olduğu gözlemlenmiştir. Modifiye elektrot için optimumpH, kaliks[4]arenimmobilize çok duvarlı karbon nanotüp miktarı, tampon derişimi ve çalışma potansiyeli sırasıyla; pH-5,5µL, 0,1 M ve -1,3 V olarak bulunmuştur. Modifiyeelektrodun biriktirme süresi 120 s ve CNT-Calix-Cra/GCE için doğrusal çalışma aralığı 3,23.10-7 - 4,81.10-5 molL-1ve korelasyon sabiti 0,9905 olarak kaydedilmiştir.

Voltammetric Determination of Cd(II) Using Modified Solid Electrode Surface Based Nanoparticle and Calix[4]arene

Heavy metal pollution has become a serious threat for human health, living resources and ecological systems. Therefore, the determination of heavy metal concentrations is important. In this study; metal sensor based nanoparticles was prepared to determine heavy metal ions. For this purpose, solid surface electrodes were prepared using the new synthesized calixarene functionalized multiwalled carbon nanotube as nanopartule and developed a new method to determine metal on prepared surface. To determine the performance of the prepared CNT-Calix-Cra/GCE electrode, SWASV (square wave anodic stripping voltammetry) voltamogramme calibration graphs were obtained using certain range of standards.  When the sensitivity and operating range of the modified electrode examined it was observed that a higher Cd(II) sensitivity. The optimum pH, Calix [4] arene immobilized multi-walled carbon nanotube quantity, buffer concentration and work potential for the modified electrode, respectively; pH-5,5µL, 0.1 M and  -1.3 V were found. Deposition time 120 s and linear operating range 3,23.10-7 - 4,81.10-5molL-1 for CNT-Calix-Cra/GCE and correlation coefficient was recorded as 0,9905.

___

  • Abu-Hilal AH, Badran MM (1990). Effect of pollution sources on metal concentration in sediment cores from the Gulf of Aqaba (Red Sea). Marine Pollution Bulletin 21(4): 190-197.
  • Balazs BT, Horvath G, Grün A, Csokai V, Töke L, Bitter G (2001). Synthesis and structure elucidation of chromogenic calix[4]arene indophenols capped by carboxamide bridges. I Eur J Org Chem 61-71.
  • Barak NAE, Mason CF (1990). Mercury, cadmium and lead in eels and roach the effects of size, season and locality on metal concentrations in flesh and liver. Sci Total Envir 92: 249–256.
  • Belıles RV (1970). Metals, in toxicology. The Basic Science of Poisons. L.J. Casarett & Doull's Toxicology, Eighth Edition
  • Cirugeda DC, Şantöz DA, Cirugeda Delgado ME (1988). Content of the toxic metals lead and cadmium in chicken eggs from different Spanish regions. Alimemaria 191(21): 23-24.
  • Devi R, Yadav S, Pundir CS (2011). Electrochemical detection of xanthine in fish meat by xanthine oxidase immobilized on carboxylated multiwalled carbon nanotubes/polyaniline composite film. Biochemical Engineering Journal 59: 148-153.
  • Dunnick JK, Fowler BA (1988). Cadmium in Handbook on toxicity of inorganic compounds.
  • El Nabavvi A, Heinzow B, Kruse H (1987). As, Cd, Cu, Pb, Hg and Zn in fish from Alexandria Region. Bull Environ Contam Toxicol Egypt 39: 889-897.
  • Ghica ME, Paulikaite R, Fatibello-Filho O, Brett CMA (2009). Application of functionalized carbon nanotubes immobilized on chitosan films in amperometric enzyme biosensors. Sens Actuators B 142: 308-315.
  • Gutsche CD, Johnston DE, Stewart DR (1999). Pathways for the reversion of p-tert-Butylcalix[8]arene top-tert-Butylcalix[4]arene(1). Journal of Organic Chemistry 64(10): 3747-3750.
  • Kasassi A, Rakimbei P, Karagiannidis A, Zabaniotou A, Tsiouvaras K, Nastis A, Tzafeiropoulou K (2008). Soil contamination by heavy metals: Measurements from a closed unlined landfill. Bioresource Technology 99(18): 8578-8584.
  • Marcovecchio E, Moreno VJ, Perez A (1988). Determination of heavy metal concentrations in biota of bahia blanca, Argentina. The Science of The Environment 75: 181-190.
  • Niu J, Lee JY (1999). Renewable-surface graphite–ceramic enzyme sensors for the determination of hypoxanthine in fish meat. Anal Lett 36: 81-83.
  • Scholz F (2010). Electroanalytical Methods. Springer; 2nd edition.
  • Unob FAZ, Vicens J (1998). An anthracene-based fluorescent sensor for transition metal ions derived from calix[4]arene. Tetrahedron Lett 39: 2951-2954.
  • Van Loon JDAA, Coppi L, Verboom W, Pochini A, Ungaro R, Harkema S, Reinhoudt DNJ (1990). Selective functionalization of calix[4]arenes at the upper rim. Org Chem 55: 5639-5646.
  • Wildgoose GG, Banks CE, Leventis HC, Compton RG (2006). Chemically modified carbon nanotubes for use in electroanalysis. Microchimica Acta 152: 187-214
  • Zhang TXM, He L, Xi K, Gu M, Jiang Z (2008). Synthesis, characterization and cytotoxicity of phosphoryl choline-grafted water-soluble carbon nanotubes. Carbon 46: 1782-1791.