Oda Sıcaklığında Çinko Ftalosiyaninin BTX Gazlarına Duyarlılığı

Bu çalışmada; benzen, toluen ve ksilen gibi elektron veren stabil aromatik buharların 2(3), 9(10), 16(17), 23(24)-Tetra-((5-bromo-2-methoxyphenyl)diazenyl) phthalocyaninatozinc(II) (Çinko ftalosiyanine) ince film mekanizması ile etkileşimi karşılaştırılmıştır. Çinko ftalosiyanine’in elektriksel iletkenlikteki değişimi, BTX- çinko ftalosiyanine etkileşiminin bir göstergesi olarak kullanılır. Sensör yüzeyinin BTX buharlarına maruz kalması, sensör akımında beklenmedik bir artışa neden olmaktadır. Düşük BTX buhar konsantrasyonlarında, çinko ftalosiyanine sensörü toluen buharlarına maksimum, ksilen buharına minimum hassasiyet göstermektedir. Ancak, yüksek BTX buhar konsantrsanyonlarında ksilen için maksimum, benzene için minimum duyarlılık görülmüştür. Bu bulgular, H+ ve OH− gibi bazı ayrışmış su moleküllerinin varlığı ve reaksiyon aktivasyon enerjisinin sonucudur.

Room Temperature BTX Sensor Based on Zinc Phthalocyanine Thin Film

This study deals with comparing interaction mechanisms of 2(3), 9(10), 16(17), 23(24)-Tetra-((5-bromo-2-methoxyphenyl)diazenyl) phthalocyaninatozinc(II) (zinc phthalocyanine) thin film with versatile chemical vapours: stable and electron donating aromatic vapours namely; benzene, toluene and xylene. The variation in electrical conductivity of zinc phthalocyanine is used as an indicator of the BTX- zinc phthalocyanine interactions. It was found that, unexpectedly, the exposure of the sensor surface to BTX vapors cause an increase in sensor current. It was observed for low concentrations of BTX vapours that, zinc phthalocyanine based sensor exhibits maximum and minimum sensitivities towards toluene and xylene vapors, respectively. However, the maximum and minimum sensitivities of the sensor gradually changes from xylene to benzene for high concentrations of BTX vapors. These findings was concluded in the framework of reaction activation energy and the presence of some water dissociated species, such as H+ or OH−.

___

  • Bearzotti A, Macagnano A, Papa P, Venditti I, Zampetti E (2017). A study of a QCM sensor based on pentacene for the detection of BTXvapors in air. Sensors and Actuators 240: 1160–1164.
  • Im J, Sterner ES, Swager TM (2016). Integrated Gas Sensing System of SWCNT and Cellulose Polymer Concentrator for Benzene, Toluene, and Xylenes. Sensors 16: 183.
  • Ueno Y, Horiuchi T, Tomita M, Niwa O, Zhou H, Yamada T, Honma I (2002). Separate Detection of BTX Mixture Gas by a Microfluidic Device Using a Function of Nanosized Pores of Mesoporous Silica Adsorbent. Analytical Chemistry 74: 5257-5262.
  • Occupational Safety and Health Administration (OSHA Standard) 29 CFR 1910.1000.
  • Nizamidin P, Yimit A, Nurulla I, Itoh K (2012). Optical Waveguide BTX Gas Sensor Based on Yttrium-Doped Lithium Iron Phosphate Thin Film. ISRN Spectroscopy 2012: 1-6.
  • Kadir R, Yimit A, Ablat H, Mahmut M, Itoh K (2009). Optical Waveguide BTX Gas Sensor Based on Polyacrylate Resin Thin Film. Environmental Science and Technology 43: 5113-5116.
  • Sun Y, Cao X, Liu Y, Wang N, He R (2014). Research on benzene, toluene and dimethyl benzene detection based on a cataluminescence sensor. Luminescence 29: 122-126.
  • Rushi AD, Datta KP, Ghosh PS, Mulchandani A, Shirsat MD (2014). Selective discrimination among benzene, toluene, and xylene: 497 probing metalloporphyrin-functionalized single-walled carbon 498 nanotube-based field effect transistors. The Journal of Physical Chemistry C 18: 24034-2404.
  • Kim JH, Wu P, Kim HW, Kim SS (2016). Highly Selective Sensing of CO, C6H6, and C7H8 Gases by Catalytic Functionalization with Metal Nanoparticle. ACS Applied Material Interfaces 8: 7173-7183.
  • Geetha SA, Abhishek M, Albert VD, Vladimir PO, Kris AB, Norman AS, Mulpuri VR (2011). Highly selective GaN-nanowire/TiO2-nanocluster hybrid sensors for detection of benzene and related environment pollutants. Nanotechnology 22: 295503.
  • Sui L, Zhang X, Cheng X, Wang P, Xu Y, Gao S, Zhao H, Huo L (2017). Au-Loaded Hierarchical MoO3 Hollow Spheres with Enhanced Gas-Sensing Performance for the Detection of BTX (Benzene, Toluene, And Xylene) And the Sensing Mechanism. ACS Applied Material Interfaces 9 (2): 1661-1670.
  • Mirzaei A, Kim J, Kim HW, Kim SS. Resistive-based gas sensors for detection of benzene, tolueneand xylene (BTX) gases: A review. Journal of Physical Chemistry C 2018; 6: 4342-4370,
  • Şahin S, Altun S, Altındal A, Odabaş Z (2015). Synthesis of novel azo-bridged phthalocyanines and their toluene vapour sensing properties. Sensors and Actuators B 206: 601–608.
  • Altın Ş, Dumludağ F, Oruç Ç, Altındal A (2015). Influence of humidity on kinetics of xylene adsorption onto ball-type hexanuclear metallophthalocyanine thin film. Microelectronic Engineering 134: 7–13.
  • Yüzüak MM, Altun S, Altındal A, OdabaşZ (2015). Dielectric properties and electronic absorption: a comparison of novel azo- and oxo-bridged phthalocyanines. Dalton Transactions 44: 1397–1405.
  • Koch EE, Grobman WD (1977). Ultraviolet photoemission studies of phthalocyanines. The Journal of Chemical Physics 67: 837-839.
  • Pope M (1962). Surface Ionization Energies of Organic Compounds: Phthalocyanines. The Journal of Chemical Physics 36: 2810-2811.
  • Mirzaei A, Kim J, Kim HW, Kim SS (2018). Resistive-based gas sensors for detection of benzene, toluene and xylene (BTX) gases: A review. Journal of Materials Chemistry C 6: 4342-4370.
  • Shen Z, Zhang X, Ma X, Mi R, Chen Y, Ruan S (2018). The significant improvement for BTX (benzene, toluene and xylene) sensing performance based on Au-decorated hierarchical ZnO porousrose-like architecturesZ. Sensors and Actuators B: Chemical 262: 86-94.
  • Ridhi R, Saini GSS, Tripathi SK (2017). Sensing of Organic Vapours by Sulfonated Copper Phthalocyanine Salt Thin Films. Materials Focus 6: 386-393.