REMİNERALİZASYON AJANLARINDA GÜNCEL YAKLAŞIMLAR

ÖZ Minimal invaziv diş hekimliğinin bir ilkesi olarak başlangıç mine çürük lezyonlarını remineralize etmek için klinik olarak çürük önleme stratejilerine olan ihtiyaç çok belirgindir. Florür içeren materyallerle yapılan remineralizasyon uygulamaları, mevcut çürük yönetimi felsefelerinin temel taşı iken; başlangıç lezyonlarının daha derin remineralizasyonunu teşvik ettiğini, yüksek florür içerikli ürünlerle ilişkili potansiyel riskleri azalttığını ve ömür boyu çürük kontrolünü kolaylaştırdığını iddia eden bir dizi yeni remineralizasyon stratejileri geliştirilmektedir. Bu sistemler, genel olarak florürün etkinliğinin artmasını teşvik ederek çürük lezyonlarını onaran biyomimetik mine rejenerasyon teknolojileri ve yaklaşımları olarak kategorize edilebilir.

CURRENT APPROACHES TO REMINERALIZATION AGENTS

ABSTRACT As a principle of minimally invasive dentistry, the need for clinical caries prevention strategies to remineralize initial enamel carious lesions is evident. While fluoride-containing remineralization is the cornerstone of current caries management philosophies; a number of new remineralization strategies are being developed that claim to promote deeper remineralization of initial lesions, reduce potential risks associated with high fluoride products, and facilitate lifelong caries control. These fluoride-free remineralization systems can be broadly categorized as biomimetic enamel regeneration technologies and approaches that repair carious lesions by promoting increased fluoride efficacy.

___

  • 1. Featherstone J. D. B., Chaffee B. W. (2018). The Evidence for Caries Management by Risk Assessment (CAMBRA®). Advances in Dental Research, 29(1), 9–14.
  • 2. González-Cabezas C., Fernández C. E. (2018). Recent Advances in Remineralization Therapies for Caries Lesions. Advances in Dental Research, 29(1), 55–59.
  • 3. Angelova Volponi A., Zaugg L. K., Neves V., et al. (2018). Tooth repair and regeneration. Curr Oral Health Rep, 5(4), 295–303.
  • 4. Abou Neel E. A., Aljabo A., Strange A., et al. (2016). Demineralization-remineralization dynamics in teeth and bone. Int J Nanomedicine, 11, 4743–4763.
  • 5. Farooq I., Bugshan A. (2020). The role of salivary contents and modern technologies in the remineralization of dental enamel: a narrative review. F1000Res, 9, 171.
  • 6. Cochrane N. J., Cai F., Huq N. L., Burrow M. F., Reynolds E. C. (2010). New Approaches to Enhanced Remineralization of Tooth Enamel. Journal of Dental Research, 89(11), 1187–1197.
  • 7. Schmidlin P., Zobrist K., Attin T., Wegehaupt F. (2016). In vitro re-hardening of artificial enamel caries lesions using enamel matrix proteins or self-assembling peptides. Journal of Applied Oral Science, 24(1), 31–36.
  • 8. Shahid M. (2017). Regular supervised fluoride mouthrinse use by children and adolescents associated with caries reduction. Evid Based Dent, 18, 11–12.
  • 9. AIHW (2018). Dental and Oral Health Overview. Australian Welfare 2017. Australian Welfare Series No13. AUS 214. Canberra, AIHW.
  • 10. Fontana M. (2016). Enhancing Fluoride: Clinical Human Studies of Alternatives or Boosters for Caries Management. Caries Research, 50(1), 22–37.
  • 11. Wierichs R. J., Meyer-Lueckel H. J. (2015). Systematic review on noninvasive treatment of root caries lesions. J Dent Res, 94, 261–271.
  • 12. Zohoori F. V., Maguire A. (2018). Are there good reasons for fluoride labelling of food and drink? Br Dent J, 224, 215–217.
  • 13. Lynch R. J., Smith S. R. (2012). Remineralization Agents – New and Effective or Just Marketing Hype? Advances in Dental Research, 24(2), 63–67.
  • 14. Ismail A. I., Tellez M., Pitts N. B., Ekstrand K. R., Ricketts D., Longbottom C., Eggertsson H., Deery C., Fisher J., Young D. A., Featherstone J. D., Evans W., Zeller G. G., Zero D., Martignon S., Fontana M., Zandona A. (2013). Caries management pathways preserve dental tissues and promote oral health. Community Dent Oral Epidemiol, 41(1), 12-40.
  • 15. Pitts N. B., Wright J. P. (2018). Reminova and EAER: Keeping Enamel Whole through Caries Remineralization. Advances in Dental Research, 29(1), 48–54. 16. Ruan Q., Moradian-Oldak J. (2015). Amelogenin and enamel biomimetics. Journal of Materials Chemistry B, 3(16), 3112–3129.
  • 17. Alkilzy M., Tarabaih A., Santamaria R. M., Splieth C. H. (2017). Self-assembling Peptide P11-4 and Fluoride for Regenerating Enamel. Journal of Dental Research, 97(2), 148–154.
  • 18. Moradian-Oldak J. (2012). Protein-mediated enamel mineralization. Front Biosci (Landmark Ed) , 17, 1996–2023.
  • 19. Yang Y., Lv X. P., Shi W., Li J. Y., Li D. X., Zhou X. D., Zhang L. L. (2014). 8DSS-Promoted Remineralization of Initial Enamel Caries In Vitro. Journal of Dental Research, 93(5), 520–524.
  • 20. Liang K., Xiao S., Shi W., Li J., Yang X., Gao Y., Li J. (2015). 8DSS-promoted remineralization of demineralized dentin in vitro. Journal of Materials Chemistry B, 3(33), 6763–6772.
  • 21. Zheng W., Ding L., Wang Y., Han S., Zheng S., Guo Q., Li W., Zhou Z. X., Zhou X., Zhang L. (2019). The effects of 8DSS peptide on remineralization in a rat mod of enamel caries evaluated by two nondestructive techniques. Journal of Applied Biomaterials & Functional Materials, 17(1).
  • 22. Yang Y., Lv X., Shi W., Zhou X., Li J., Zhang L. (2016). Synergistic Inhibition of Enamel Demineralization by Peptide 8DSS and Fluoride. Caries Research, 50(1), 32–39.
  • 23. Chen M., Yang J., Li J., Liang K., He L., Lin Z., Li, J. (2014). Modulated regeneration of acid-etched human tooth enamel by a functionalized dendrimer that is an analog of amelogenin. Acta Biomaterialia, 10(10), 4437–4446.
  • 24. Kind L., Stevanovic S., Wuttig S., Wimberger S., Hofer J., Müller B., Pieles U. (2017). Biomimetic Remineralization of Carious Lesions by Self-Assembling Peptide. Journal of Dental Research, 96(7), 790–797.
  • 25. Dawasaz A. A., Togoo R. A., Mahmood Z., Azlina A., Ponnuraj K. T. (2022). Effectiveness of Self-Assembling Peptide (P11-4) in Dental Hard Tissue Conditions: A Comprehensive Review. Polymers (Basel), 14(4), 792.
  • 26. Alkilzy M., Santamaria R. M., Schmoeckel J., Splieth C. H. (2018). Treatment of Carious Lesions Using Self-Assembling Peptides. Advances in Dental Research, 29(1), 42–47.
  • 27. Schlee M., Schad T., Koch J. H., Cattin P. C., Rathe F. (2018). Clinical performance of self-assembling peptide P11-4 in the treatment of initial proximal carious lesions: a practice-based case series. J Investig Clin Dent, 9(1).
  • 28. Mukherjee K., Ruan Q., Liberman D., White S. N., Moradian-Oldak J. (2016). Repairing human tooth enamel with leucine-rich amelogenin peptide–chitosan hydrogel. Journal of Materials Research, 31(05), 556–563.
  • 29. Prajapati S., Ruan Q., Mukherjee K., Nutt S., Moradian-Oldak J. (2018). The presence of MMP-20 reinforces biomimetic enamel regrowth. J Dent Res, 97, 84–90.
  • 30. Fan M., Zhang M., Xu H. H. K., Tao S., Yu Z., Yang J., Li J. (2020). Remineralization effectiveness of the PAMAM dendrimer with different terminal groups on artificial initial enamel caries in vitro. Dental Materials, 36(2), 210–220.
  • 31. Sun M., Wu N., Chen H. (2017). Laser-assisted Rapid Mineralization of Human Tooth Enamel. Scientific Reports, 7(1).
  • 32. Bordea I. R., Candrea S., Alexescu G. T., Bran S., Băciuț M., Băciuț G., Todea, D. A. (2020). Nano-hydroxyapatite use in dentistry: a systematic review. Drug Metabolism Reviews, 1–14.
  • 33. Souza B. M., Comar L. P., Vertuan M., Fernandes Neto C., Buzalaf M. A. R., Magalh~aes A. C. (2015). Effect of an experimental paste with hydroxyapatite nanoparticles and fluoride on dental demineralisation and remineralisation in situ. Caries Res., 49(5), 499–507.
  • 34. Huang S., Gao S., Cheng L., Yu H. (2011). Remineralization Potential of Nano-Hydroxyapatite on Initial Enamel Lesions: An in vitro Study. Caries Research, 45(5), 460–468.
  • 35. Ekambaram M., Mohd Said S. N. B., Yiu C. K. Y. (2017). A Review of Enamel Remineralisation Potential of Calcium- and Phosphate-based Remineralisation Systems. Oral Health Prev Dent, 15(5), 415-420.
  • 36. Fernando J. R., Shen P., Sim C. P. C., Chen Y., Walker G. D., Yuan Y., Reynolds C., Stanton D. P., MacRae C. M., E. C. Reynolds. (2019). Self-assembly of dental surface nanofilaments and remineralisation by SnF2 and CPP-ACP nanocomplexes. Sci Rep., 9, 1285.
  • 37. AlRefeai M. H., AlHamdan E. M., Al-Saleh S., Alqahtani A. S., Al-Rifaiy M. Q., Alshiddi I. F., Farooq I., Vohra F., Abduljabbar T. (2021). Application of β-Tricalcium Phosphate in Adhesive Dentin Bonding. Polymers (Basel), 25, 13(17), 2855.
  • 38. Karlinsey R. L., Pfarrer A. M. (2012). Fluoride Plus Functionalized β-TCP. Advances in Dental Research, 24(2), 48–52.
  • 39. Memarpour M., Baghdadabadi N. A., Rafiee A., Vossoughi M. (2020). Ion release and recharge from a fissure sealant containing amorphous calcium phosphate. PLoS One, 5, 15(11).
  • 40. Takeshita E. M., Danelon M., Castro L. P., Cunha R. F., Delbem A. C. B. (2016). Remineralizing Potential of a Low Fluoride Toothpaste with Sodium Trimetaphosphate: An in situ Study. Caries Research, 50(6), 571–578.
  • 41. Freire I. R., Pessan J. P., Amaral J. G., Martinhon C. C. R., Cunha R. F., Delbem, A. C. B. (2016). Anticaries effect of low-fluoride dentifrices with phosphates in children: A randomized, controlled trial. Journal of Dentistry, 50, 37–42.
  • 42. Huang X. , Deng M., Liu M., Cheng L., Exterkate R. A. M., Li J., Zhou X., Ten Cate J. M. (2017). Comparison of Composition and Anticaries Effect of Galla Chinensis Extracts with Different Isolation Methods. Open Dent J, 31, 11, 447-459.
  • 43. Islam S. M., Hiraishi N., Nassar M., Sono R., Otsuki M., Takatsura T., Yiu C., Tagami J. (2012). In vitro effect of hesperidin on root dentin collagen and de/remineralization. Dent Mater J, 31, 362–367.
  • 44. Farooq I., Ali S., Siddiqui I. A., et al. (2019). Influence of Thymoquinone Exposure on the Micro-Hardness of Dental Enamel: An In Vitro Study. Eur J Dent., 13(3), 318–322.
Selcuk Dental Journal-Cover
  • ISSN: 2148-7529
  • Yayın Aralığı: Yılda 3 Sayı
  • Başlangıç: 2014
  • Yayıncı: Selcuk Universitesi Dişhekimliği Fakültesi