ORTODONTİDE ÜÇ BOYUTLU GÖRÜNTÜLEME SİSTEMLERİ: LİTERATÜR DERLEMESİ

Üç boyutlu görüntüleme sistemleri son 20 yıldır ortodontide ve oral ve maksillofasiyal cerrahide popüler teşhis ve öngörü yöntemi olmaya başlamıştır. Bilgisayarlı Tomografi sistemleri üç boyutlu kesit görüntülerinin bilgi üretmek için kullanılabileceğini açıkça göstermiştir. 1980’lerin başlarında araştırmacılar üç boyutlu görüntülemeyi kraniofasiyal deformiteler için geliştirmeye başlamışlardır. Ortodontide üç boyutlu görüntülemenin çeşitli kullanım amaçları vardır. Manyetik Rezonans Görüntüleme (MRG), diğer bir üç boyutlu görüntüleme tekniğidir ve çalışma prensibi açısından farklıdır, avantajı dokuların iyonize edici ışınlara maruz kalmaması, görüntü için incelenmek istenen bölgeye radyo dalgaları gönderilmesi ve hidrojen atomlarının kullanılmasıdır. En son geliştirilen teknoloji ise 3dMD gibi üç boyutlu yüz tarama sistemleridir. Senkronize edilmiş görüntüler ile x,y ve z koordinat düzleminde 3 boyutlu olarak görüntü verirler. Yazılım aynı zamanda görüntü işleme, haritalama ve ölçümler için de kullanılmaktadır ve kusursuz 3 boyutlu görüntüler elde etmek için kamera sistemi ile kalibre edilmiştir. Sonuç olarak üç boyutlu görüntüleme sistemleri son teknolojilere paralel olarak gelişmektedir ve hem diş hekimliğinde hem de özel olarak ortodonti alanında popülerliğini uzun süre koruyacağı şimdiden öngörülmektedir. 

___

  • 1. Broadbent BH. A new X-ray technique and its application to orthodontia: the introduction of cephalometric radiography. Angle Orthod. 1981;51(2):93-114.
  • 2. Singh IJ, Savara BS. Norms Of Size And Annual Increments Of Seven Anatomical Measures Of Maxillae In Girls From Three To Sixteen Years Of Age. Angle Orthod. 1966;36(4):312-24.
  • 3. Dean D, Hans MG, Bookstein FL, Subramanyan K. Three-dimensional Bolton-Brush Growth Study landmark data: ontogeny and sexual dimorphism of the Bolton standards cohort. Cleft Palate Craniofac J. 2000;37(2):145-56.
  • 4. Subramanyan K, Dean D, Scanned bi-orthogonal radiographs as a source for 3D cephalometric data. Medical Imaging 1996; 1996: International Society for Optics and Photonics.
  • 5. Burke P, Beard L. Stereophotogrammetry of the face: A preliminary investigation into the accuracy of a simplified system evolved for contour mapping by photography. Am J Orthod. 1967;53(10):769-82.
  • 6. Udupa JK, Herman GT. 3D imaging in medicine: CRC press; 1999.
  • 7. Seeram E. 3-D imaging: basic concepts for radiologic technologists. Radiol Technol. 1997;69(2):127-49.
  • 8. Farkas LG, Posnick JC, Hreczko TM. Anthropometric growth study of the head. Cleft Palate Craniofac J. 1992;29(4):303-8.
  • 9. Dimaggio FR, Ciusa V, Sforza C, Ferrario VF. Photographic soft-tissue profile analysis in children at 6 years of age. Am J Orthod Dentofacial Orthop. 2007;132(4):475-80.
  • 10. Canigur Bavbek N, Balos Tuncer B, Tortop T. Soft tissue alterations following protraction approaches with and without rapid maxillary expansion. J Clin Pediatr Dent. 2014;38(3):277-83.
  • 11. Zhao H, Du H, Li J, Qin Y. Shadow moiré technology based fast method for the measurement of surface topography. Applied optics. 2013;52(33):7874-81.
  • 12. Wong JY, Oh AK, Ohta E, Hunt AT, Rogers GF, Mulliken JB, et al. Validity and reliability of craniofacial anthropometric measurement of 3D digital photogrammetric images. Cleft Palate Craniofac J. 2008;45(3):232-9.
  • 13. Edler R, Wertheim D, Greenhill D. Comparison of radiographic and photographic measurement of mandibular asymmetry. Am J Orthod Dentofacial Orthop. 2003;123(2):167-74.
  • 14. McCarthy JG, Karron DB. Three-dimensional input of body surface data using a laser light scanner. Ann Plast Surg. 1988;21(1):38-45.
  • 15. White SC. Cone-beam imaging in dentistry. Health Phys. 2008;95(5):628-37.
  • 16. White SC, Pharoah MJ. The evolution and application of dental maxillofacial imaging modalities. Dent Clin North Am. 2008;52(4):689-705.
  • 17. Robb RA. The dynamic spatial reconstructor: an x-ray video-fluoroscopic CT scanner for dynamic volume imaging of moving organs. IEEE transactions on medical imaging. 1982;1(1):22-33.
  • 18. Mozzo P, Procacci C, Tacconi A, Martini PT, Andreis IB. A new volumetric CT machine for dental imaging based on the cone-beam technique: preliminary results. Eur Radiol. 1998;8(9):1558-64.
  • 19. Aktan Am, Güngör E, Çiftçi Me, İşman Ö. Diş Hekimliğinde Konik Işınlı Bilgisayarlı Tomografi Kullanımı. Atatürk Üniversitesi Diş Hekimliği Fakültesi Dergisi. 2015;25(1).
  • 20. Feldkamp L, Davis L, Kress J. Practical cone-beam algorithm. JOSA A. 1984;1(6):612-9.
  • 21. Arai Y, Tammisalo E, Iwai K, Hashimoto K, Shinoda K. Development of a compact computed tomographic apparatus for dental use. practice. 1999;12:15.
  • 22. Aruna U, Annamalai P, Nayar S, Bhuminathan S. Primary failure of eruption-a case report with cone beam computerized tomographic imaging. J Clin Diagn Res. 2014;8(4):ZD14.
  • 23. da Silva Campos MJ, de Albuquerque EG, Pinto BCH, Húngaro HM, Gravina MA, Fraga MR, et al. The role of orthodontic tooth movement in bone and root mineral density: a study of patients submitted and not submitted to orthodontic treatment. Med Sci Monit. 2012;18(12):CR752-CR7.
  • 24. Sakuma A, Saitoh H, Suzuki Y, Makino Y, Inokuchi G, Hayakawa M, et al. Age estimation based on pulp cavity to tooth volume ratio using postmortem computed tomography images. J Forensic Sci. 2013;58(6):1531-5.
  • 25. Yoon S-J, Wang R-F, Na HJ, Palomo JM. Normal range of facial asymmetry in spherical coordinates: a KIBT study. Imaging Sci Dent. 2013;43(1):31-6.
  • 26. Pathak S, Mishra N, Rastogi MK, Sharma S. Significance of Radiological Variables Studied on Orthopantamogram to Pridict Post-Operative Inferior Alveoler Nerve Paresthesia After Third Molar Extraction. J J Clin Diagn Res. 2014;8(5):ZC62.
  • 27. Mah JK, Danforth RA, Bumann A, Hatcher D. Radiation absorbed in maxillofacial imaging with a new dental computed tomography device. Oral Surg Oral Med Oral Pathol Oral Radiol Endod. 2003;96(4):508-13.
  • 28. Müller R, Van Campenhout H, Van Damme B, Van der Perre G, Dequeker J, Hildebrand T, et al. Morphometric analysis of human bone biopsies: a quantitative structural comparison of histological sections and micro-computed tomography. Bone. 1998;23(1):59-66.
  • 29. Tsiklakis K, Syriopoulos K, Stamatakis H. Radiographic examination of the temporomandibular joint using cone beam computed tomography. Dentomaxillofac Radiol. 2014.
  • 30. Honda K, Larheim T, Maruhashi K, Matsumoto K, Iwai K. Osseous abnormalities of the mandibular condyle: diagnostic reliability of cone beam computed tomography compared with helical computed tomography based on an autopsy material. Dentomaxillofac Radiol. 2014.
  • 31. Cevidanes LH, Styner MA, Proffit WR. Image analysis and superimposition of 3-dimensional cone-beam computed tomography models. Am J Orthod Dentofacial Orthop. 2006;129(5):611-8.
  • 32. Domeshek LF, Mukundan Jr S, Yoshizumi T, Marcus JR. Increasing concern regarding computed tomography irradiation in craniofacial surgery. Plast Reconstr Surg. 2009;123(4):1313-20.
  • 33. Mah JK, Yi L, Huang RC, Choo H, editors. Advanced applications of cone beam computed tomography in orthodontics. Semin Orthod; 2011: Elsevier.
  • 34. Brooks S, Miles D. Advances in diagnostic imaging in dentistry. Dent Clin North Am. 1993;37(1):91-111.
  • 35. Edwards M. Magnetic resonance imaging of the head and neck. Dent Clin North Am. 1993;37(4):591-611.
  • 36. Kraus SL. TMJ disorders: management of the craniomandibular complex: Churchill Livingstone; 1988.
  • 37. Kondoh T, Westesson P-L, Takahashi T, Seto K-i. Prevalence of morphological changes in the surfaces of the temporomandibular joint disc associated with internal derangement. J Maxillofac Oral Surg. 1998;56(3):339-43.
  • 38. Nebbe B, Brooks S, Hatcher D, Hollender L, Prasad N, Major P. Interobserver reliability in quantitative MRI assessment of temporomandibular joint disk status. Oral Surg Oral Med Oral Pathol Oral Radiol Endod. 1998;86(6):746-50.
  • 39. Marguelles-Bonnet RE, Carpentier P, Yung J, Defrennes D, Pharaboz C. Clinical diagnosis compared with findings of magnetic resonance imaging in 242 patients with internal derangement of the TMJ. J Orofac Pain. 1995;9(3).
  • 40. Lane C, Harrell W. Completing the 3-dimensional picture. Am J Orthod Dentofacial Orthop. 2008;133(4):612-20.
  • 41. Aldridge K, Boyadjiev SA, Capone GT, DeLeon VB, Richtsmeier JT. Precision and error of three‐dimensional phenotypic measures acquired from 3dMD photogrammetric images. Am J Med Genet A. 2005;138(3):247-53.
  • 42. Kohn LAP, Cheverud JM, Bhatia G, Commean P, Smith K, Vannier MW. Anthropometric optical surface imaging system repeatability, precision, and validation. Ann Plast Surg. 1995;34(4):362-71.
  • 43. Weinberg SM, Scott NM, Neiswanger K, Brandon CA, Marazita ML. Digital three-dimensional photogrammetry: evaluation of anthropometric precision and accuracy using a Genex 3D camera system. Cleft Palate Craniofac J. 2004;41(5):507-18.
  • 44. Schendel SA, Jacobson R, Khalessi S. 3-dimensional facial simulation in orthognathic surgery: is it accurate? J Maxillofac Oral Surg. 2013;71(8):1406-14.
  • 45. Ullah R. The validity of 3dMD Vultus in predicting soft tissue morphology following orthognathic surgery: University of Birmingham; 2014.