Cerebral morphology in adult mice following Long-term gravity increase

Süleyman Demirel Üniversitesi TIP FAKÜLTESİ DERGİSİ: 2007 Aralık; 14(4) Cerebral morphology in adult mice following Long-term gravity increase Tuncay Varol*, E. Oguzhan Oguz**, Enis Cezayirli*, H.Seda Vatansever*** *Department of Anatomy, Medical School, Celal Bayar University, Manisa, Turkey. **Department of Histology and Embryology, Medical School, Pamukkale University, Denizli, Turkey. ***Department of Histology and Embryology, Medical School, Celal Bayar University, Manisa, Turkey. Özet Uzun süreli gravite artışı uygulanan erişkin farelerde beyin morfolojileri Gravitenin akselerasyonu ve rotasyonunda yada parabolik uçuş sırasında artması organizma içerisinde strese neden olur. Bununla beraber, organizma içerisindeki bazı biyolojik değişiklikler artmış graviteye karşı cevap olarak gelişir. Uzun süreli gravite değişikliklerin ve rotasyonun etkilerini belirlemek amacı için, C57BL6 F1 fare beyin dokusunda hipergravite ortamındaki yapısal değişiklikler incelendi. Farelere bir veya iki gravite ortamında uzun-süreli sentrifüj uygulandı ve tedavi edilmeyen grup kontrol grubu olarak kabul edildi. Sentrifüjden 4 hafta sonra, fareler sakrifiye edildi ve beyinleri ascending aortadan %10 formalin solüsyonu ile perfüze edildi. Beyinler çıkarıldıktan sonra, parafine gömüldüler ve seri koronal kesitler ve sistemik üniform rastgele beyin kesitleri analiz edildi. Buna ilaveten, farklı gravite şartlarının nörodejeneratif etkilerini incelemek amacı için glial fibrillary asidik proteinin (GFAP) beyindeki immunohistokimyasal dağılımı incelendi. Sonuçlarımız göstermiştir ki, uzun süreli hipergravite beyin volumünde değişiklik yapmamaktadır ve tüm gruplarda beyinin hücresel morfolojisi normaldir ve dejeneratif değişiklikler gözlenmemiştir. Farelerin beyin morfolojilerinin uygulanan bu şartlarda hipergravite ile etkilenmediği gözlenmiştir. Anahtar Kelimeler: C57BL6 F1 fare, uzun-süreli sentrifüj, Cavalieri'nin volüm ölçümü, GFAP Abstract Cerebral morphology in adult mice following Long-term gravity increase Increases in gravitational forces that result from acceleration and rotation or parabolic flight can create significant stress for living organisms. Indeed, some biological changes in living organisms have specifically arisen to combat the effects of increased gravitational forces. To determine the potential effects of rotation and long-term gravitational changes, we have investigated the structural changes in C57BL6 F1 mice cerebral tissue under hypergravity conditions. Mice were subjected to long-term centrifugation under one or two gravities and compared with a non-treated control group. After 4 weeks of centrifugation, the mice were sacrificed and their brains were perfused through the ascending aorta with 10% formaldehyde. After removal of the brains, they were embeded in paraffin embedding and the cutting of serial coronal sections and systematic uniform random cerebral sections were analysed and The sterologic cortex and medulla volume estimations were performed. In addition, the immunohistochemical distribution of glial fibrillary acidic protein (GFAP) in cerebrum was determined to reveal any neurodegenerative effects of these different gravity conditions. Our results demonstrate that there were no long-term hypergravitational effects upon the cerebral volume, and that the cellular morphology of the cerebrum in all of the groups remained normal, and hence free from any degenerative changes. Under given conditions mice cerebral morphology has not been effected by hypergavity. Keywords: cerebrum , C57BL6 F1 mice, long-term centrifugation, Cavlieri's volume estimation, GFAP

___

  • Moore J, Duke J. Effect of chronic centrifugation on mouse breeding pairs and their offspring. The Physiologist 1988;31:121-4.
  • Krasnov IB, Polyakov IV, Ilyina-Kakueva EI Drobyshev VI. Morphology and hystochemistry of spinal cord and soleus muscle in rats grown under hypergravity. The Physiologist 1992;32:216-7.
  • Krasnov IB, Alekseev EI, Loginov VI, Burkovskaia TE Chel'naia NA. Repeated hypergravity morphologic investigations of pituitary, thyroid, blood and bone marrow in rats. Aviakosm Ekolog Med 1998;32:31- 40.
  • Serova LV. Adaptive capacities of mammals in weightlessness and hypergravity. The Physiologist 1992;35:89-91.
  • Krasnov IB. Gravitational neuromorphology. Advances in Space Biology and Medicine 1994;4:85-110.
  • Son M., Shahed AR, Werchan PM, and Lee JC. c-fos and HSP70 gene expression in rat brains in high gravitation-induced cerebral ischemia. Neurosc Lett. 200 (1995) 81-84.
  • Werchan PM, Schadt JC, Fanton JW, Laughlin MH. Total and regional cerebral blood flow during recovery from G-LOC. Aviat and Space Environ Med 1996;67:751-8.
  • Guillaume A, Osmont D, Gaffie D, Sarron JC, Quandieu P. Effects of perfusion on the mechanical behaviour of the brain exposed to hypergravity. J Biomech 1997;30:383-9.
  • D'Amelio F, Wu LC, Fox RA, Daunton NG, Corcoran ML, Polyakov I. Hypergravity exposure decreases gamma-aminobutyric acid immunoreactivity in axon terminals contacting pyramidal cells in tha rat somatosensory cortex: a quantitative immunocytochemical image analysis. Journal of Neurosc Res 1998; 53:135-42.
  • Tripp LD, Chelette T, Savul S, Widman RA. Female exposure to high G: effects of simulated combat sorties on cerebral and arterial O2 saturation. Aviat and Space Environ Med 1998;69:869-74.
  • Gustave DDS, Gestreau C, Lacour M. Fos _expression in the rat brain after exposure to gravito-inertial force changes. Brain Res 2000;861:333-44.
  • Kobayashi A, Miyamoto Y. In-flight cerebral oxygen status: continuous monitoring by near-infrared spectroscopy. Aviat and Space Environ Med 2000;71:177-83.
  • Siegel SM.Gravity as a biochemical determinant. 1979;17:147-60.
  • Cogoli A. The effect of hypogravity and hypergravity o n c e l l s o f t h e i m m u n e s y s t e m . J Leukoc Biol. 1993 Sep;54(3):259-68. Review.
  • Vasques M, Lang C, Grindeland RE, Roy RR, Daunton N, Bigbee AJ et al. CE. Comparison of hyper- and microgravity on rat muscle, organ weights and selected plasma constituents. Aviat Space Environ Med. 1998 Jun;69(6 Suppl):A2-8.
  • Holley DC, DeRoshia CW, Moran MM, Wade CE. Chronic centrifugation (hypergravity) disrupts the circadian system of the rat. 2003 Sep;95(3):1266-78. Epub 2003 Jun 6.
  • Stevens L, Bozzo C, Nemirovskaya T, Montel V, Falempin M, Mounier Y. Contractile properties of rat single muscle fibers and myosin and troponin isoform expression after hypergravity. 2003 Jun;94(6):2398- 405. Epub 2003 Feb 7.
  • Guillaume AI, Osmont D, Gaffie D, Sarron JC, Quandieu P. Physiological implications of mechanical effects of +Gz accelerations on brain structures. 2002 Mar;73(3):171-7; discussion 178.
  • Cai WM, Braun M, Sievers A. Displacement of statoliths in Chara rhizoids during horizontal rotation on clinostats. Shi Yen Sheng WU Hsueh Bao 1997; 30: 147 – 155
  • Antonelli A, Santucci D, Amendola T, Triaca V, Corazzi G, Francia N et al. et al. Short-term hypergravity influences NGF and BDNF expression, and mast cell distribution in the lungs and heart of adult male mice. 2002 Dec;9(2):29-38.
  • Yang CL, Jin YB, Yu H, Yi CR, Cheng J, Zhan H. Effects of dietary supplementation of certain nutrients on maze performance and biochemical indices in mice after exposure to high +Gz. Space Med Med Eng (Beijing). 2003 Apr;16(2):79-82.
  • a Borisova T, Himmelreich N. Effects of the inhibitors on glutamate uptake by nerve terminals after exposure of rats to centrifuge-induced hypergravity. J Gravit Physiol. 2004 Jul;11(2):P37-8.
  • b Borisova T, Krisanova N, Himmelreich N. Exposure of animals to artificial gravity conditions leads to the alteration of the glutamate release from rat cerebral hemispheres nerve terminals. Adv Space Res. 2004;33(8):1362-7.
  • Del Signore A, Mandillo S, Rizzo A, Di Mauro E, Mele A, Negri R et al. Hippocampal gene expression is modulated by hypergravity. Eur J Neurosci. 2004 Feb;19(3):667-77.
  • Eng LF. Glial fibrillary acidic protein (GFAP): the major protein of glial intermediate filaments in differentiated astrocytes. Journal of Neuroimmunology 1985;8:203-14.
  • Cavalieri, B. (1635).Geometria Indivisibilibus Continuorum. Reprinted as Geometria Degli Indivisibili. Torino: Unione Tipografico-Editorice Torinese, (1966).
  • Howard CV, Reed MG, Unbiased Stereology. BIOS Scientific Publishers, Oxford, UK, 1998, 39-53.
  • Nyengaard JR. 1999. Stereologic Methods and Their Application in Kidney Research. J Am Soc Nephrol 10:1100-1123, 1999.
  • Miller JD, McMillen BA, McConnaughey MM, Williams HL, Fuller CA. Effects of microgravity on brain neurotransmitter receptors. European Journal of Pharmacology 1989;161:165-71.
  • Goss JR, Morgan DG. Enhanced glial fibrillary acidic protein RNA response to fornix transection in aged mice. Journal of Neurochemistry 1995;64:1351-60.
  • DeArmond SJ, Lee YL, Kretzschmar HA, Eng LF. Turnover of glial filaments in mouse spinal cord. Journal of Neurochemistry 1986;47:1749-53.
  • Zhang WX, Zhan CL, Geneg XC, Yan GD, Lu X, Chu X. Cerebral blood flow velocity by transcranial doppler during a vertical-rotating table simulation on the push- pull effect. Aviation Space Environmental Medicine 2000; 71:485 – 488.
  • Vogt LH. Physiological effects of sustained acceleration. Life Science Space Research 1976; 14:77-89.
  • Smith, 1973 Son M, Shahed AR, Werchan PM, Lee JC: C-fos and HSP70 gene _expression in rat brains in high gravitation-induced cerebral ischemia. Neuroscience Letters 1995;200: 81-4.
  • Murakami DM, Fuller CA. The effect of 2G on muse circadian rhytms. Journal of Gravity and Physiology 2000; 7:79 – 85.
SDÜ Tıp Fakültesi Dergisi-Cover
  • ISSN: 1300-7416
  • Yayın Aralığı: Yılda 4 Sayı
  • Başlangıç: 2015
  • Yayıncı: Süleyman Demirel Üniversitesi