Silikon İkameli Hidroksiapatitte Biyoaktivite Ve Kemik Oluşumu

Bioactivity and successful bone formation in silicon-substituted hydroxyapatite bone grafts were investigated by using scanning electron microscopy and electron dispersive x-ray spectroscopy. Areas of bone formation have been detected in scanning electron microscopy; and, arranged lamellar collagen has been observed. 20.8% average carbon content rise has been detected between bone graft and the produced bone; and, this has been confirmed to be a gradual increase throughout the interphase. Obvious bone formation and maturation were observed in the samples. Carbon content gradually increased from bone graft to the bone formed, confirming formation of new bone and dissociation of silicon-substituted bone graft.

Bioactivity And Bone Formation In Silicon-Substituted Hydroxyapatite

-

___

  • : Brookes M. (1971).The Blood Supply of Bone, Butterworths, London.
  • : Nather A. (Ed), Hafiz, A., Nazri M.Y., Khalid K.A., Aminudin C.A. and Zamzuri Z. (2005).Bone Grafts and Bone Substitutes, Basic Science and Clinical Applications, World Scientific Publishing Co. Pte.Ltd., p.4.
  • : Leblond C.P. (1989). Synthesis And Secretion of Collagen By Cells of Connective Tissue, Bone and Dentin, Anatomical Records, 224(2), p.123-138.
  • : De Jong W.F. (1926). La Substance MineraleDans Les Os, Recueil des TravauxChimiques des Pays, 45, p445.
  • : Hedges R.E.M. and van Klinken G.J. (1992). A Review of Current Approaches In the Tretreatment of Bone for Radiocarbon Dating by AMS, In Long A., and Kra R.S. (eds), Proceedings of the 14th International 14C Conference, Radiocarbon, 34(3), p.279-291.
  • : Hing K.A. (2004). Bone Repair in the Twenty-First Century: Biology, Chemistry or Engineering?,Philosophical Transactions of the Royal Society A,362.p.2821–2850.
  • : Lian J., Gorski J., Ott S. (2004). Bone Structure and Function, American Society For Bone And Mineral Research Bone Curriculum, [Online Resource], Available at: http://depts.washington.edu/bonebio/ASBMRed/structure.html, [Last Accessed: 11 October 2011] .
  • : Posner, A. S. (1969). Crystal Chemistry of Bone Mineral.Physiology Reviews, 49(4), p.760–792.
  • : McConnel D. (1973).Apatite, Springer.
  • : Turner C.H. et al. (1994). Mechanical Loading Thresholds for Lamellar and Woven Bone Formation, Journal of Bone and Mineral Research, 9:1, p.87-97.
  • : Mellors R.C., (2011). Osteoblasts and Bone Matrix, Bone, [Online Resource], Available at: http://www.medpath.info/MainContent/Skeletal/Bone_01.html, [Last Accessed: 11 October 2011].
  • : Adler C.P. (2000). Bones and Bone Tissue: Normal Anatomy and Histology. Bone Diseases, New York, Springer-Verlag, p.1-30.
  • : Hadjidakis D.J. and Androulakis I.I. (2006).Bone Remodeling.Annals of New York Academy of Sciences, 1092, p.385-396.
  • : Wolff J. (1986). The Law of Bone Remodeling, Berlin Heidelberg New York: Springer, Translation of the German 1892 edition.
  • : Frost H.M. (1960). The Utah Paradigm of Skeletal Physiology, International Society of Musculoskeletal and Neuronal Interactions, 1 and 2.
  • : Anselme K. (2000). Osteoblast Adhesion on Biomaterials, Biomaterials, 21, p.668–680.
  • : Cypher T.J., Grossman J.P. (1996). Biological Principles of Bone Graft Healing, Journal of Foot Ankle Surgery; 35: p.413–17.
  • : Bone Grafting, (2011), Cleveland Clinic,[Online Resource],Available at: http://my.clevelandclinic.org/services/bone_grafting/or_overview.aspx, [Last Accessed:15 April 2012].
  • : Greenwald A.S., Boden S.D., Barrack R.L., Bostrom M.P.G., GoldbergV.M.,YaszemskiM.J., Heim C.S. (2001). The Evolving Role of Bone-graft Substitutes, The Journal of Bone and Joint Surgery, 83(2), p.98-103.
  • : Simonds R.J., Holmberg S.D., Hurwitz R.L. (1992). Transmission of Human Immunodeficiency Virus Type 1 from a Seronegative Organ and Tissue Donor.New England Journal of Medicine,326, p.726–32.
  • : Mankin H.J., Gebhardt M.C. (1996). Long Term Results of Allograft Replacement in the Management of Bone Tumours, Clinical Orthopaedics; 324: p.86–97.
  • : Byrd H.S., Hobar P.C. (1993). Augmentation of Craniofacial Skeleton with Porous Hyroxyapatite Granules, Reconstructive Surgery, 91, p.15–22.
  • : Parikh S.N. (2002). Bone Graft Substitutes: Past, Present, Future, Review Article, 48(2), p.142-148.
  • : LeGeros R.Z., LeGeros J.P. (1993). Dense Hydroxyapatite. In: Hench L.L.,Wilson J. (eds), An Introduction to Bioceramics, Singapore, World Scientific, p.139–180.
  • : Yuan H., Kurashina K., de Bruijn J. D., Li Y., de Groot K., and Zhang X. (1999). A Preliminary Study on Osteoinduction of Two Kinds of Calcium Phosphate Ceramics, Biomaterials, 20 (19), p.1799–1806.
  • : Amarh-Bouali S., Rey C., Lebugle A., Bernache D. (1994).Surface Modifications of Hydroxyapatite Ceramics in Aqueous Media.Biomaterials, 15, p.269–72.
  • : Li S., De Wijn J. R., Li J., Layrolle P., De Groot K. (2003). Macroporous Biphasic Calcium Phosphate Scaffold with High Permeability/Porosity Ratio, Tissue Engineering, 9 (3), p.535–548 .
  • : Hing K.A. (2005). Bioceramic Bone Graft Substitutes: Influence of Porosity and Chemistry, International Journal of Applied Ceramic Technology, 2(3), p.184-199.
  • : Gauthier O., Bouler J. M., Aguado E., Pilet P., Daculsi G. (1998). Macroporous Biphasic Calcium Phosphate Ceramics: Influence of Macropore Diameter and Macroporosity Percentage on Bone Ingrowth, Biomaterials, 19(1– 3), p.133–139.
  • : Hulbert S.F. and Klawitter J.J. (1972).Tissue Reaction to Three Ceramics of Porous and Non Porous Structures, Journal of Biomedical Materials Research,6, p.347.
  • : Annaz B. Hing K.A., Kayser M., Buckland T., Di Silvio L. (2004a). An Ultrastructural Study of Cellular Response to Variation In Porosity In Phase-Pure Hydroxyapatite, Journal of Microscopy, 16(2) p.97-109.
  • : Hing K. A., Best S. M., Tanner K. E., Revell P.A. Bonfield W. (1999). Quantification of Bone Ingrowth within Bone-Derived Porous Hydroxyapatite Implants of Varying Density.Journal of Materials Science: Materials in Medicine,. 10(10/11), p. 663-670
  • : Carlisle E.M., (1970).Silicon: A Possible Factor in Bone Calcification, Science, 167, p.279.
  • : Schwars K. and Milne D.B. (1972).Growth-promoting Effects of Silicon in Rats,Nature, 239, p.333.
  • : Patel N. Gibson I.R., Hing K.A., Best S.M., Damien E., Revell P.A., Bonfield W. (2001).The In Vivo Response of Phase Pure Hydroxyapatite and Carbonated Substituted Hydroxyapatite Granules of Varying Size Ranges, Key Engineering Materials, 218-220, p.383-386.
  • : Christophy et al. (2008). Encouraging Nature with Ceramics: The Roles of Surface Roughness and Physiochemistry on Cell Response to Substituted Apatites, Advances in Scinence and Technology, 57, p.22-30.
  • : Reffitt D. M., Jugdaohsingh R., Thompson R. P., Powell J. J. (1999). Silicic Acid: Its Gastrointestinal Uptake and Urinary Excretion in Man and Effects on Aluminium Excretion, Journal of Inorganic Biochemistry, 76(2), p.141–147.
  • : Reffitt D. M., Ogston N., Jugdaohsingh R., Cheung H. F., Evans B. A., Thompson R. P., Powell J. J., and Hampson G. N. (2003). Orthosilicic Acid Stimulates Collagen Type 1 Synthesis and Osteoblastic Differentiation in Human Osteoblast-Like Cells In Vitro, Bone, 32(2), p.127–135.
  • : Bohner M. (2009). Silicon-Substituted Calcium Phosphates – A Critical View, Biomaterials, 30, p.6403–6406.
  • : Munir G., Koller G., L. Di Silvio, M.J. Edirisinghe, W Bonfield, J Huang, (2011). The Pathway to Intelligent Implants: Osteoblast Response to Nano-silicon-doped Hydroxyapatite Patterning, Journal of Royal Society Interface.
  • : Rashid N., Harding T., Buckland T., Hing K.A. (2008).Nano-Scale Manipulation Of Silicate-Substituted Apatite Chemistry Impacts Surface Charge, Hydrophilicity, Protein Adsorption and Cell Attachment, International Journal of Nano And Biomaterials, 1(3), p.299-319.
  • : Guth K., Campion C., Buckland T., Hing K.A. (2010) Effect of Silicate Substitution on Attachment and Early Development of Human Osteoblast-like Cells Seeded on Microporous Hydroxyapatite Discs,Advnced Engineering Materials,12(B), p.26–36.
  • : Porter A. E., Patel N., Skepper J. N., Best S. M., and Bonfield W. (2003). ‘‘Comparison of In Vivo Dissolution Processes in Hydroxyapatite and Silicon-Substituted Hydroxyapatite Bioceramics,’’ Biomaterials, 24 (25), p.4609–4620.
  • : Guth K., Buckland T., Hing K.A. (2006). Silicon Dissolution from Microporous Silicon Substituted Hydroxyapatite and Its Effect On Osteoblast Behaviour, Key Engineering Materials, 309-311,p.117-120.
  • : Hing K.A., Wilson L.F., Buckland T. (2007).Comparative Performance of Three Ceramic Bone Graft Substitutes, The Spine Journal, 7(4), p.475-90.
  • : Ozad U. (2012), Investigation of the Bone-Bone Graft Interphase Using Scanning Electron Microscopy
  • : Bone Grafting, 2012, Encyclopedia of Surgery, [Online Resource],Available at: http://www.surgeryencyclopedia.com/A-Ce/Bone-Grafting.html, [Last Accessed:15 April 2012].
  • : Sarkar S.K., Sullivan C.E., Torchia D.A. (1985). Nanosecond Fluctuations of the Molecular Backbone of Collagen in Hard and Soft Tissues: a Carbon-13 Nuclear Magnetic Resonance Relaxation Study, Biochemistry, 24 (9), p.2348–2354.
  • : Patel N., Brooks R. A., Clarke M. T., Lee P. M. T., Rushton N., Gibson I. R., Best S. M., Bonfield W. (2005). In vivo Assessment of Hydroxyapatite and Silicate-Substituted Hydroxyapatite Granules Using an Ovine Defect Model, Journal of Materials Science: Materials In Medicine, 16, p.429-440.
  • : Coathup M., Samizadeh S., Amogbokpa J., Fang S.Y., Hing K.A., Buckland T. And Blunn G.W. (2011). The Osteoinductivity of Silicon Substituted Hydroxyapatite, Journal of Bone and Joint Surgery, 93A (23), p.2219-2226.
  • : Hing K.A., Chmpion C., Coathup M., Buckland T., Blunn G. (2011). Influence of Increasing Strut Porosity on Variation In Bone Formation In Ectopically-Implanted Silicate-Substituted Hydroxyapatite Bone Graft Substitutes, Bio-materials, 1840, p.2011.
  • : McConnel D. (1973).Apatite, Springer.
  • : Driessens F.C.M. (1980). The Mineral in Bone, Dentin and Tooth Enamel, Bulletin Des Sociétés Chimiques Belges, 89, p.663.
  • : Aoki H. (1991). Science and Medical Applications of Hydroxyapatite, Tokyo: Takayama Press.
  • : Alvarez-Lloret P., Rodriguez-Navarro A.B., Romanek C.H.S., Gaines K.F. (2006).Congdon J., Quantitative Analysis of Bone Mineral Using FTIR.26. Reunion (SEM).
  • : Mehta R., Lane R.A., Fitch H.M.,Ali N., Soulsby M., Chowdhury P. (2008). Studies of Hard and Soft Tissue Elemental Compositions in Mice and Rats Subjected to Simulated Microgravity ,AIP Conference Proceedings, 1099, p. 259-264.
Sakarya University Journal of Science-Cover
  • Yayın Aralığı: Yılda 6 Sayı
  • Başlangıç: 1997
  • Yayıncı: Sakarya Üniversitesi