Kumarin Türevli Kopolimerlerin Sentezi ve Karakterizasyonu

Mevcut çalışmada, kumarin türevli yeni bir monomer olan 3-benzoil kumarin-7-il-metakrilat (BKMA) monomerinin metil metakrilat (MMA) ile farklı bileşimlerde bir seri kopolimeri hazırlandı. Bu amaçla serbest radikal polimerizasyon yöntemi kullanıldı. Spektral karakterizasyonlar FTIR ve 1H-NMR teknikleri ile başarıldı. Kopolimer sistemlerinin bileşimleri 1H-NMR spektrumlarından belirlendi. DSC analizinden kopolimer bileşimindeki BKMA oranı %23 seviyesine düştüğünde camsı geçiş sıcaklığında 179 oC’den 165 oC’ye bir azalış görüldü. Poli(BKMA) homopolimeri ve %54 BKMA bileşimli kopolimerin TGA analizinde her iki polimer için başlangıç bozunma sıcaklıkları sırasıyla 321 oC ve 311 oC olarak kaydedildi.

Synthesis and Characterization of Coumarin Derived Copolymers

In present study, a copolymer series of a new coumarin derived monomer 3-benzoyl coumarin-7-yl-methacrylate (BKMA) monomer with methyl methacrylate (MMA) at different compositions was prepared. For this purpose, free radical polymerization method was used. Spectral characterizations were performed by FTIR and 1H-NMR techniques. Copolymer compositions were determined with 1H-NMR spectra. From DSC analysis, the glass transition temperature of copolymers was decreased from 179 oC to 165 oC when the level of BKMA ratio decreased to 23% level. In TGA analysis of poly(BKMA) homopolymer and the copolymer with 54% BKMA ratio, the initial decomposition temperatures of both polymers were recorded to be 321 oC and 311 oC, respectively. 

___

  • [1] K. N. Venugopala, V. Rashmi, and B. Odhav, “Review on natural coumarin lead compounds for their pharmacological activity,” BioMed Research International, Article ID 963248, 14, 2013.
  • [2] Y. Aoyama, T. Katayama, M. Yamamoto, H. Tanaka, and K. Kon, “A new antitumor antibiotic product, demethylchartreusin. Isolation and biological activities,” The Journal of Antibiotics, vol. 45, pp. 875–878, 1992.
  • [3] H. J. Patel, M. G. Patel, A. K. Patel, K. H. Patel, and R. M. Patel, “Synthesis, characterization and antimicrobial activity of important heterocyclic acrylic copolymers,” eXPRESS Polymer Letters vol. 2, no.10, pp. 727–734, 2008.
  • [4] M. P. Brun, L. Bischoff, C. Garbay, “A very short route to enantiomerically pure coumarin bearing fluorescent amino acids,” Angewandte Chemie International Edition, vol. 43, no. 26, pp. 3432-3436, 2004.
  • [5] L. Zhao, D. A. Loy, and K. J. Shea, “Photodeformable spherical hybrid nanoparticles,” Journal of the American Chemical Society, vol. 128, no. 44, pp. 14250-14251, 2006.
  • [6] P. O. Jackson, M. O’Neill, W. L. Duffy, P. Hindmarsh, S. M. Kelly, G. J. Owen, “An investigation of the role of cross-linking and photodegradation of side-chain coumarin polymers in the photoalignment of liquid crystals,” Chemistry of Materials, vol. 13, no. 2, pp. 694-703, 2001.
  • [7] C. Kim, A. Trajkovska, J. U. Wallace, S. H. Chen, “New insight into photoalignment of liquid crystals on coumarin-containing polymer films,” Macromolecules, vol. 39, no. 11, pp. 3817-3823, 2006.
  • [8] Y. Tian, E. Akiyama, Y. Nagase, A. Kanazawa, O. Tsutsumi, and T. Ikeda, “Liquid crystalline coumarin polymers, 1. Synthesis and properties of side-group liquid crystalline polymers with coumarin moieties,” Macromolecular Chemistry and Physics, vol. 201, no. 14, pp. 1640–1652, 2004 . [9] T. O. Soine, “Naturally occurring coumarins and related physiological activities,” Journal of Pharmaceutical Sciences, vol. 53, no. 3, pp. 231-264, 1964.
  • [10] P. Sharma, and S. Pritmani, “Synthesis, characterization and antimicrobial studies of some novel 3-arylazo-7 -hydroxy-4-methylcoumarins,” Indian Journal of Chemistry-B, vol. 38, no. 9, pp. 1139-1142, 1999.
  • [11 T. Patonay, G. Litkei, R. Bognar, J. Erdei, and C. Miszti, “Synthesis, antibacterial and antifungal activity of 4-hydroxycoumarin derivatives, analogues of novobiocin,” Pharmazie, vol. 39, no. 2, pp. 84-91, 1984.
  • [12] R. M. Shaker, “Synthesis and reactions of some new 4H-pyrano[3,2-c]benzopyran-5-one derivatives and their potential biological activities,” Pharmazie, vol. 51, no. 3, 148-151, 1996.
  • [13] A. A. Emmanuel-Giota, K. C. Fylaktakidou, D. J. Hadjipavlou-Litina, K. E. Litinas, and D. N. Nicolaides, “Synthesis and biological evalution of several 3-(coumarin-4-yl)tetrahydroisoxazole and 3 (coumarin-4-yl) dihydropyrazole derivatives,” Journal of Heterocyclic Chemistry, vol. 38, no. 3, pp. 717-722, 2001.
  • [14] Z. M. Nofal, M. El-Zahar, and S. Abd El-Karim, “Novel coumarin derivatives with expected biological activity,” Molecules, vol. 5, no. 3, pp. 99-113, 2000.
  • [15] A. Srivastava, V. Mishra, P. Singh, R. Kumar, “Coumarin-based polymer and its silver nanocomposite as advanced antibacterial agents: Synthetic path, kinetics of polymerization, and applications,” Journal of Applied Polymer Science, vol. 126, no. 2, pp. 395-407, 2012.
  • [16] A. Kurt, M. Kaya, and M. Koca, “Synthesis and characterization of coumarin derived surface active monomer, Adıyaman University Journal of Science, vol. 6, no. 1, pp. 110-121, 2016.
  • [17] Z. Essaidi, O. Krupka, K. Iliopoulos, E. Champigny, B. Sahraoui, M. Sallé, and D. Gindre, “Synthesis and functionalization of coumarin-containing copolymers for second order optical nonlinearities,” Optical Materials, vol. 35, no. 3, pp. 576–581, 2013.
  • [18] A. Kurt, and M. Koca, “Synthesis, characterization and thermal degradation kinetics of poly(3-acetylcoumarin-7-yl-methacrylate) and its organoclay nanocomposites,” Journal of Engineering Research, vol. 4 , no. 4, pp. 46-65, 2016.
  • [19] C. Zhang, R. Liang, C. Jiang, D. Chen, and A. Zhong, “Synthesis, characterization, and self-assembly of cationic coumarin side-chain polymer,” Journal of Applied Polymer Science, vol. 108, no. 4, pp. 2667–2673, 2008.
  • [20] A. F. Ayhan, “Kumarin Türevli Kopolimer Sistemlerinin Geliştirilmesi,” Yüksek Lisans Tezi, Adıyaman Üniversitesi Fen Bilimleri Enstitüsü, Adıyaman, 2017.
  • [21] A. Kurt, and K. Demirelli, “Synthesis and characterization of block copolymers of ethyl methacrylate with styrene via ATRP,” e-Journal of New World Sciences Academy Physical Sciences, vol. 4, no. 2, pp. 52–59, 2009.
  • [22] A. Kurt, “Influence of AlCl3 on the optical properties of new synthesized 3-armed poly(methyl methacrylate) films,” Turkish Journal of Chemistry, vol. 34, no. 1, pp. 67-69, 2010.
  • [23] A. Kurt, and K. Demirelli, “Graft copolymerization of poly(methyl methacrylate) with some alkyl methacrylates by atom transfer radical polymerization method and thermal properties,” Journal of Applied Polymer Science, vol. 125, no. 3, pp. 1855-1866, 2012.
  • [24] A. Kurt, and M. Koca, “Blending of poly(ethyl methacrylate) with poly(2-hydroxy-3-phenoxypropyl methacrylate): thermal and optical properties,” The Arabian Journal for Science and Engineering, vol. 39, no. 7, pp. 5413–5420, 2014.
  • [25] K. Kunal, C. G. Robertson, S. Pawlus, S. F. Hahn, and A. P. Sokolov, “Role of chemical structure in fragility of polymers: a qualitative picture,” Macromolecules, vol. 41, no. 19, pp. 7232–7238, 2008.
  • [26] N. R. Jadhav, V. L. Gaikwad, K. J. Nair, and H. M. Kadam, “Glass transition temperature: Basics and application in pharmaceutical sector,” Asian J. Pharm., vol. 3, no. 2, pp. 82–89, 2009.
  • [27] A. Kurt, “Thermal decomposition kinetics of poly(nButMA-b-St) diblock copolymer snthesized by ATRP,” Journal of Applied Polymer Science, vol. 114, no. 1, pp. 624-629, 2009.