Farklı kapı oksitli RadFET dozimetrelerinin ışınlama öncesi elektriksel karakteristiklerinin TCAD benzetim programı ile değerlendirilmesi

Bu çalışmanın amacı, kapı oksiti yüksek-k’lı dielektriklerden oluşan RadFET dozimetrelerinin ışınlama öncesi eşik gerilimlerini belirlemek ve sonuçları, kapı oksiti SiO2’den oluşan geleneksel sensörlerle kıyaslamaktır. Ayrıca çalışmada, farklı konsantrasyonlu, derinlikli ve genişlikli p+ bölgelerinin RadFET’lerin elektriksel karakteristiği üzerine etkileri de incelenmiştir. Bu amaçla, dozimetrelerin duyar bölgeleri olarak 400 nm kalınlığında yüksek-k’lı Al2O3, HfO2 dielektrikleri ve SiO2 kullanılmıştır. Sensörler, Silvaco TCAD benzetim programında tasarlanmıştır. p+ bölgelerinin uzunlukları, Id-Vg karakteristiğini değiştirirken, bu bölgelerin derinlikleri ve belirli bir değere kadar konsantrasyonları elektriksel karakteristikte önemli bir rol oynamamıştır. SiO2, Al2O3 ve HfO2-RadFET’lerden elde edilen en düşük eşik voltajları sırasıyla, -5.22, -3.63 ve -3.10 V olarak bulunmuştur. Bu sonuçlar, yüksek-k dielektrikli RadFET’lerin, radyasyon testlerinin yapılması koşuluyla, daha geniş ölçülebilir doz aralığı açısından yeni nesil dozimetreler için gelecek vaat eden bir aday olduğunu göstermektedir.

Evaluation of the pre-irradiation electrical characteristics of the RadFET dosimeters with diverse gate oxides by TCAD simulation program

The aim of the present study is to determine the pre-irradiation threshold voltages of the RadFET dosimeters with gate oxide composed of high-k dielectrics and compare the results with the traditional sensors, the gate oxide of which is composed of SiO2. The effects of the p+ regions with different concentration, depth and length on the electrical characteristic of the RadFETs were also investigated in the study. For these purposes, Al2O3, HfO2 high-k dielectrics and SiO2 with the thicknesses of 400 nm were used as the sensitive regions of the dosimeters. The sensors were designed in the Silvaco TCAD simulation program. While the lengths of the p+ regions changed the Id-Vg characteristics of the RADFETs, the depths and concentrations until a certain value of these regions did not play an important role in electrical characteristic. The lowest threshold voltages obtained from the SiO2, Al2O3 and HfO2-RadFETs were found to be -5.22, -3.63, and -3.10 V, respectively. These results demonstrated that RadFETs with high-k dielectrics may be promising candidate for the new generated dosimeters in terms of broader measurable dose range providing their radiation tests. 

___

  • M.A. Carvajal, S. García-Pareja, D. Guirado, M. Vilches, M. Anguiano, A.J. Palma, A.M. Lallena, “Monte Carlo simulation using the PENELOPE code with an ant colony algorithm to study MOSFET detectors,” Phys. Med. Biol., vol. 54, pp. 6263-6276, Oct. 2009. J.O. Goldsten, R.H. Maurer, P.N. Peplowski, A.G. Holmes-Siedle, C.C. Herrmann, B.H. Mauk, “The engineering radiation monitor for the radiation belt storm probes mission,” Space Sci. Rev., vol. 179, pp. 485-502, Nov. 2013. F. Ravotti, M. Glaser, A.B. Rosenfeld, M.L.F. Lerch, A.G. Holmes-Siedle, G. Sarrabayrouse, “Radiation monitoring in mixed environments at CERN: from the IRRAD6 facility to the LHC experiments,” IEEE T. Nucl. Sci., Vol. 54, pp. 1170-1177, Aug. 2007. A. Holmes-Siedle, L. Adams, “RadFET-A review of the use of metal-oxide silicon devices as integrating dosimeters,” Radiat. Phys. Chem., vol. 28, 235-244, 1986. G. Ristić, S. Golubović, M. Pejović, “Sensitivity and fading of pMOS dosimeters with thick gate oxide,” Sensor. Actuat. A-Phys., vol. 51, pp. 153-158, Nov. 1995. M.S. Martínez-García, J. Torres del Río, A.J. Palma, A.M. Lallena, A. Jaksic, “Comparative study of MOSFET response to photon and electron beams in reference conditions,” Sensor. Actuat. A-Phys., vol. 225, pp. 95-102, Apr. 2015. E. Yilmaz, İ. Doğan, R. Turan, “Use of Al2O3 layer as a dielectric in MOS based radiation sensors fabricated on a Si substrate,” Nucl. Instrum. Meth. A, vol. 266, pp. 4896-4898, Nov. 2008. A. Jaksic, G. Ristic, M. Pejovic, A. Mohammadzadeh, W. Lane, “Characterisation of radiation response of 400 nm implanted gate oxide RADETs,” Proc. 23rd International Conference on Microelectronics (MIEL 2002), 2002, pp. 727-730. A. Kahraman, E. Yilmaz, S. Kaya, A. Aktag, “Effects of packaging materials on the sensitivity of RadFET with HfO2 gate dielectric for electron and photon sources,” Radiat. Eff. Defect. S., vol. 170, pp. 832-844, Oct. 2015. M. Wind, P. Beck, A. Jaksic, “Investigation of the energy response of RADFET for high energy photons, electrons, protons, and neutrons,” IEEE T. Nucl. Sci., Vol. 56, pp. 3387-3392, Dec. 2009. A. Haran, A. Jakšić, N. Refaeli, A. Eliyahu, D. David, J. Barak, “Temperature effects and long term fading of implanted and unimplanted gate oxide RadFETs”, IEEE T. Nucl. Sci., vol. 51, pp. 2917-2921, Oct. 2004. G.S. Ristíc, N.D. Vasović, M. Kovačević, A.B. Jakšić, “The sensitivity of 100 nm RADFETs with zero gate bias up to dose of 230 Gy(Si),” Nucl. Instrum. Meth. B, vol. 269, pp. 2703-2708, Dec. 2011. G.S. Ristíc, M. Andjelković, A.B. Jakšić, “The behavior of fixed and switching oxide traps of RADFETs during irradiation up to high absorbed doses,” Appl. Radiat. Isotopes, vol. 102, pp. 29-34, Aug. 2015. S. Wang, P. Liu, J. Zhang, “Simulation of threshold voltage adjustment by B+ implantation for pMOS-RADFET application,” Proc. 8th IEEE International Conference on Nano/Micro Engineered and Molecular Systems (NEMS), 2013, pp. 262-263. C. Andersson, C. Rossel, M. Sousa, D.J. Webb, C. Marchiori, D. Caimi, H. Siegwart, Y. Panayiotatos, A. Dimoulas, J. Fompeyrine, “Lanthanum germanate as dielectric for scaled germanium metal-oxide-semiconductor device,” Microelectron. Eng., vol. 86, pp. 1635-1637, Jul.-Sep. 2009. W. Zhu, J-P. Han, T.P. Ma, “Mobility measurement and degradation mechanisms of MOSFETs made with ultrathin high-k dielectrics”, IEEE T. Electron Dev., vol. 51, pp. 98-105, Jan. 2004. H. Wang, Y. Wang, J. Wang, C. Ye, H.B. Wang, J. Feng, B.Y. Wang, Q. Li, Y. Jiang, “Interface control and leakage current conduction mechanism in HfO2 film prepared by pulsed laser deposition,” Appl. Phys. Lett., vol. 93, pp. 202904-1-3, Nov. 2008. A. Kahraman, E. Yilmaz, S. Kaya, A. Aktag, “Effects of post deposition annealing, interface states and series resistance on electrical characteristics of HfO2 MOS capacitors”, J. Mater. Sci.: Mater. Electron., 26, pp. 8277-8284, Nov. 2015. F.B. Ergin, R. Turan, S.T. Shishiyanu, E. Yilmaz, “Effect of γ-radiation on HfO2 based MOS capacitor,” ,” Nucl. Instrum. Meth. B, vol. 268, pp. 1482–1485, May 2010. S. Kaya, E. Yilmaz, “Influences of Co-60 gamma-ray irradiation on electrical characteristics of Al2O3 MOS capacitors,” J. Radioanal. Nucl. Ch., vol. 302, pp. 425-431, Oct. 2014. S. Kaya, E. Yilmaz, A. Kahraman, H. Karacali, “Frequency dependent gamma-ray irradiation response of Sm2O3 MOS capacitors,” Nucl. Instrum. Meth. B,vol. 358, pp. 188-193, Sep. 2015. A. Kahraman, E. Yilmaz, A. Aktag, S. Kaya, “Evaluation of radiation sensor aspects of Er2O3 MOS capacitors under zero gate bias,” IEEE T. Nucl. Sci., Vol. 63, pp. 1284-1293, Apr. 2016. P.M. Tirmali, A.G. Khairnar, B.N. Joshi, A.M. Mahajan, “Structural and electrical characteristics of RF-sputtered HfO2 high-k based MOS capacitors,” Solid State Electron., 62, pp. 44-47, Aug. 2011. J. Robertson, “High dielectric constant oxides,” Eur. Phys. J. Appl. Phys., vol. 28, pp. 265-291, Dec. 2004. A.L.S. Loke, Z-Y. Wu, R. Moallemi, C.D. Cabler, C.O. Lackey, T.T. Wee, B.A. Doybe, “Constant-Current threshold voltage extraction in HSPICE for nanoscale CMOS analog design,” Advanced Micro Devices, Inc., 1-19. Silvaco. (2008, Apr.). ATHENA User’s Manual. Silvaco. Santa Clara, CA. [Online]. Available: http://perso.esiee.fr/~polleuxj/Documents/athena_users.pdf Silvaco. (2006, Dec.) ATLAS User’s Manual: Device Simulation Software. Silvaco. Santa Clara, CA. [Online]. Available: http://ridl.cfd.rit.edu/products/manuals/Silvaco/atlas_users.pdf