The optimum leaching conditions of Artvin Murgul chalcopyrite ore in hypoclorite solution

Artvin-Murgul'dan temin edilmiş olan kalkopirit cevherinin hipoklorit çözeltisindeki optimum liç şartları incelenmiştir. Başlangıç pH'sı, hipoklorit konsantrasyonu, karıştırma hızı, katı/sıvı oranı ve sıcaklığın kalkopirit cevherinden bakırın, çözünürlüğüne etkisi araştırılmıştır. Kalkopirit mineralinin asidik pH değerlerinde hipoklorit çözeltisi ile dengede olan klor ile reaksiyon verdiği bulunmuştur. Çözünme esnasında pH önemli derecede düşmektedir. Optimum liç şartları olarak başlangıç pH'sının 5-6, 4 g/L katı/sıvı oranı için hipoklorit konsantrasyonunun 0,2 N, karıştırma hızının 600 rpm olduğu ve % 50 üzerinde bir sülfat oluşumu olduğu belirlenmiştir.

Artvin-Murgul kalkopirit cevherinin hipoklorit çözeltisindeki optimum liç şartları

The optimum leaching conditions of primary chalcopyrite ore from Artvin-Murgul region in Turkey have been examined in hypochlorite solution. The effects of various parameters as initial pH, hypochlorite concentration, stirring speed, solid/liquid ratio and temperature to the copper dissolution from chalcopyrite were investigated. It was found that chalcopyrite reacted with chlorine generated from hypochlorite in acidic pH values. pH effectively decreased during the dissolution. It was determined that the optimum leaching conditions were initial pH of 5-6, hypochlorite concentration of 0.2 N for 4 g/L solid/liquid ratio, 600 rpm stirring speed and it was seen that sulphate formation was over 50 %.

___

  • [1]. Habashi, F., Chalcopyrite its chemistry and metallurgy, McGrew-Hill, London (1978).
  • [2]. Peters, E., Hydrometallurgical process innovations, Hydrometallurgy, 29, 431-459, (1992).
  • [3]. Akçil, A., A preliminary research on acid pressure leaching pyritic copper ore in Kure Copper Mine, Turkey, Minerals Engineering, 15, 1193-1197, (2002).
  • [4]. Dutrizac, J. E., Elemental sulphur formation during the ferric sulphate leaching of chalcopyrite, Canadian Metallurgical Quarterly, 28(4),337-344, (1989).
  • [5]. Majima, H., Awakura, Y., Hiroto, T. and Tanaka, T., Leaching of chalcopyrite in ferric sulphate solutions. Canadian Metallurgical Quarterly, 24(4) 283-291, (1985).
  • [6]. Hackl, R. P., Dreisinger, D. B., Peters, E. and King, J. A., Passivation of chalcopyrite during oxidative leaching in sulphate media, Hydrometallurgy, 39, 25-48, (1995).
  • [7]. Havlik, T. and Skrobian, M., Acid leaching of chalcopyrite in the presence of ozone, Canadian Metallurgical Quarterly, 29(2), 133-139 (1990).
  • [8]. Biegler, T. and Swift, D. A., Anodic electrochemistry of chalcopyrite, Journal of Applied Electrochemistry, 9, 545-554, (1979).
  • [9]. Adebayo, A. O., Ipinmoroti, K. O. and Ajavi, O. O., Dissolution kinetics of chalcopyrite with hydrogen peroxide in sulphuric acid medium, Chemical and Biochemical Engineering Quarterly, 17(3), 213-218, (2003).
  • [10]. Antonijevic, M. M., Jankovic, Z. D. and Dimitrijevic, M. D., Kinetics of chalcopyrite dissolution by hydrogen peroxide in sulphuric acid, Hydrometallurgy, 71( 3-4), 329-334, (2004).
  • [11]. Çolak, S., Alkan, M. and Kocakerim, M. M., Dissolution kinetics of chalcopyrite containing pyrite in water saturated with chlorine, Hydrometallurgy, 18, 183-193, (1987).
  • [12] Devi, N. B., Madhuchhanda, M., Rao, K. S., Rath, P. C. and Paramguru, R. K., Oxidation of chalcopyrite in the presence of manganese dioxide in hydrochloric acid medium, Hydrometallurgy, 57, 57-76 (2000).
  • [13]. Puvvada, G. V. K. and Murthy, D. S. R., Selective precious metals leaching from a chalcopyrite using chloride/hypochlorite media, Hydrometallurgy, 58, 185-191, (2000).
  • [14]. Antonijevic, M. M. and Bogdanovic, G. D., Investigation of the leaching of chalcopyrite ore in acidic solutions, Hydrometallurgy, 73, 245-256, (2004).
  • [15]. Ekinci, Z., Çolak, S., Çakıcı, A. and Saraç, H., Leaching kinetics of sphalerite with pyrite in chlorine saturated water, Minerals Engineering, 11(3), 279-283, (1998).
  • [16]. Herreros, O., Quiroz, R. and Vinals, J., Dissolution kinatics of copper, white metal and natural chalcocite in $Cl_2/Cl^-$ media, Hydrometallurgy, 51, 345-357, (1999).
  • [17]. Jena, P. K., Barbosa-Filho, O. and Vasconcelos, I. C., Studies on the kinetics of slurry chlorination of a sphalerite concentrate by chlorine gas, Hydrometallurgy, 52, 111-122, (1999).
  • [18]. Kanari, N., Gaballah, I. and Allain, E., A low temperature chlorination-volatilization process for the treatment of chalcopyrite concentrates, Thermochimica Acta, 373, 75-93, (2001).
  • [19]. Herreros, O., Quiroz, R., Hernandez, M. C. and Vinals, J., Dissolution kinetics of enargite in dilute $Cl_2/Cl^-$ media. Hydrometallurgy, 64, 153-160, (2002).
  • [20]. Vinals, J., Roca, A., Hernandez, M. C. and Benavente, O., Topochemical transformation of enargite into copper oxide by hypochlorite leaching, Hydrometallurgy, 68, 183-193 (2003).
  • [21]. Li, W., Coal desulfurization with sodium hypochlorite, Master Of Science in Chemical Enginering, West Virginia University-(2004).
  • [22]. Curreli, L., Ghiani, M., Surracco., M. and Orru, G., Beneficiation of a gold bearing enargite ore by flotation and Arsenic leaching with sodium hypochlorite, Minerals Engineering, 18(8), 849-854 (2005).
  • [23]. Alkan, M., Oktay, M., Kocakerim M. M. and Çopur, M., Solubility of chlorine in aqueous hydrochloric acid solutions, Journal of Hazardous Materials, A119, 13-18, (2005).