Asimetrik üç serbestlik dereceli bir düzlemsel paralel robot mekanizmasının kinematik analizi

Bu çalışmada üç Serbestlik Derecesine (SD) sahip bir düzlemsel paralel robot mekanizmasının kinematik analizi gerçekleştirilmiştir. Seçilen mekanizmanın diğer düzlemsel mekanizmalardan farkı asimetrik bacak yapısına sahip olmasıdır. Asimetrik yapıyı elde etmek için 3-RPR (R:Dönel eklem, P: Aktif prizmatik eklem) yapısındaki simetrik bir düzlemsel robot mekanizmasının bir bacağı RRR (R: Aktif dönel eklem) tipi bacak ile değiştirilmiş ve bu sayede RPR2RRR1 adını verdiğimiz asimetrik düzlemsel paralel robot mekanizması elde edilmiştir. Bu mekanizma için ters kinematik, Jacobian matrisi ve tekil noktalardan bağımsız çalışma uzayı analizi ile ilgili hesaplamalar gerçekleştirilmiştir. Ayrıca bu mekanizmanın performansı simetrik düzlemsel bir paralel robot mekanizması olan 3-RPR mekanizması ile karşılaştırılmıştır. Elde edilen sonuçlara göre önerilen mekanizmanın çalışma uzayının hem uç işlevci tarafından ulaşılabilinen nokta sayısı hem de yönelim açısının sınır değerleri yönünden 3-RPR mekanizmasından daha iyi olduğu gösterilmiştir.

Kinematic analysis of a 3-DOF asymmetrical planar parallel robot mechanism

In this study, kinematic analysis of a planar parallel robot mechanism with three degrees of freedom (DOF) was performed. The difference of the selected mechanism from the other planar mechanisms is that it has an asymmetric leg structure. In order to provide the asymmetry, a leg of 3-RPR (R: Revolute joint, P: Active prismatic joint) symmetrical planar robot mechanism was replaced by a RRR (R: Active revolute joint) type leg and the asymmetrical planar parallel robot named RPR2RRR1 mechanism has been obtained. Inverse kinematics, Jacobian matrix and singularity free workspace analysis were performed for the proposed mechanism. In addition, the performance of this mechanism is compared with the 3-RPR mechanism, which is a symmetric planar parallel robot mechanism. According to the obtained results, it has been shown that the workspace of the proposed mechanism is better than the 3-RPR mechanism in terms of both the number of points that can be reached by the end-effector and the limit values of the orientation angle.

___

  • M. Toz ve S. Kucuk, “Dimensional optimization of 6-DOF 3-CCC type asymmetric parallel manipulator”, Advanced Robotics, cilt. 28(9), pp. 625–637, 2014.
  • M. Toz ve S. Kucuk, “Dexterous workspace optimization of an asymmetric six-degree of freedom Stewart–Gough platform type manipulator”, Robotics and Autonomous Systems, cilt 61(12), pp. 1516–1528, 2013.
  • X.S. Gao, D. Lei, Q. Liao ve G.F. Zhang, “Generalized Stewart–Gough platforms and their direct kinematics”, IEEE Transactions on Robotics, cilt 21(2), pp. 141–151, 2005.
  • L.W. Tsai, “Robot Analysis: The Mechanics of Serial and Parallel Manipulators”, John Wiley & Sons, 1999.
  • Y. Singh ve M. Santhakumar, “Inverse dynamics and robust sliding mode control of a planar parallel (2-PRP and 1-PPR) robot augmented with a nonlinear disturbance observer”, Mechanism and Machine Theory, cilt 92, pp. 29-50, 2015.
  • P.S. Londhe, Y. Singh, M. Santhakumar, B.M. Patre ve L.M. Waghmare, “Robust nonlinear PID-like fuzzy logic control of a planar parallel (2PRP-PPR) manipulator”, ISA Transactions, cilt 63, pp. 218-232, 2016.
  • M. Wu, D. Zhang, "Statics of a new asymmetrical parallel robot," 2008 IEEE International Conference on Automation and Logistics, Qingdao, pp. 2466-2470, 2008.
  • M. Wu, D. Zhang ve X. Zhao, "Conceptual Design and Kinematic Performance Evaluation of a New Asymmetrical Parallel Robot," 2007 International Conference on Mechatronics and Automation, Harbin, pp. 2854-2859, 2007.
  • S. Yan ve L. Yi, "CAD Application to the Analysis about the Workspace of an Asymmetric Parallel Robot Influenced by the Joints”, Distribution" 2008 International Conference on Computer and Electrical Engineering, Phuket, pp. 497-501, 2008.
  • B. Li, J. Zhao, X. Yang, Y. Hu, “Kinematic Analysis of a Novel Three Degree-Of-Freedom Planar Parallel Manipulator”, International Journal of Robotics and Automation, cilt 24(2), pp. 158-165, 2009.
  • S. Kucuk, “Simulation and design tool for performance analysis of planar parallel manipulators”, Simulation, cilt 88(5), pp. 542-556, 2012.
  • J. P. Merlet, C. M. Gosselin, N. Mouly, “Workspace of planar parallel manipulators”, Mechanism and Machine Theory, cilt 33(1-2), pp.7-20, 1998.
  • S. Kucuk, “A Dexterity comparison for 3-DOF planar parallel manipulators with two kinematic chains using genetic algorithms”, Mechatronics, cilt 19(6), pp. 868-877, 2009.
  • R. Chandra, L. Rolland, “On solving the forward kinematics of 3RPR planar parallel manipulator using hybrid metaheuristics”, Applied Mathematics and Computation, cilt 217(22), pp. 8997-9008, 2011. [ S. Caro, N. Binaud, P. Wenger, “Sensitivity Analysis of 3-RPR Planar Parallel Manipulators”, ASME. J. Mech. Des., cilt 131(12), pp. 121005-121005-13, 2009.
  • Q. Jiang, C. M. Gosselin, "The Maximal Singularity-Free Workspace of Planar 3-RPR Parallel Mechanisms," 2006 International Conference on Mechatronics and Automation, Luoyang, Henan, pp. 142-146, 2006.
  • S. M. Varedi-Koulaei, H. M. Daniali, M. Farajtabar, B. Fathi M. Shafiee-Ashtiani, “Reducing the undesirable effects of joints clearance on the behavior of the planar 3-RRR parallel manipulators”, Nonlinear Dynamics, cilt 86(2), pp. 1007–1022, 2016.
  • J. Jesús Cervantes-Sánchez, J. M. Rico-Martínez, I. J. Brabata-Zamora, J. D. Orozco-Muñiz, “Optimization of the Translational Velocity for the Planar 3-RRR Parallel Manipulator”, Journal of the Brazilian Society of Mechanical Sciences and Engineering, cilt 38(6), pp. 1659–1669, 2016.
  • S. Kucuk, “Energy minimization for 3-RRR fully planar parallel manipulator using particle swarm optimization”, Mechanism and Machine Theory, cilt 62, pp. 129-149, 2013.