(2+1) Boyutlu difüzyon denkleminin eşdeğerlik grupları

Bir diferansiyel denklemler grubu keyfi fonksiyonlar, parametreler içeriyorsa, elimizde aynı yapıda diferansiyel denklemler ailesi var demektir. Klasik fiziğin hemen hemen tüm alan denklemleri, içerdiği parametrelerin farklı yapıları için, değişik malzemeleri temsil eder. Eşdeğerlik grupları, verilen bir diferansiyel denklem ailesini değişmez bırakan dönüşüm grupları olarak tanımlanır. Bu nedenle diferansiyel denklem ailelerinin eşdeğerlik grupları, aynı aileye ait, farklı denklemler arası ilişkileri inceleme açısından önemli bir çalışma alanıdır. Bu çalışmada, lineer olmayan difüzyon denklemin eşdeğerlik grupları, Lie grupları uygulaması çerçevesinde incelenmiş ve sonuçlar tartışılmıştır.

Equivalence groups of (2+1) dimensional diffusion equation

If a given set of differential equations contain some arbitrary functions, parameters, we have in fact a family of sets of equations of the same structure. Almost all field equations of classical physichs have this property, representing different materials with various paramaters. Equivalence groups are defined as the group of transformations which leave a given family of differential equations invariant. Therefore, equivalence group of family of differential equations is an important area within the framework of the relations between different equations of the same family. In this work the equivalence groups of nonlinear diffusion equation are investigated as application of Lie groups and their results are discussed.

___

  • E. S. Şuhubi, Dış Form Analizi, Türkiye Bilimler Akademisi, Türkiye, 2008.
  • F. Oliveri and M.P Speciale, “Equivalence transformations of quasilinear first order systems and reduction to autonomous and homogeneous form”, Acta applicandae mathematicae, vol. 122, no. 1, pp. 447–460, 2012.
  • S Özer and E.S. Şuhubi, “Equivalence transformations for first order balance equations.” International journal of engineering science, vol. 42, no. 11, pp. 1305-1324, 2004.
  • L.V. Ovsiannikov, Group analysis of differential equations, Academic Press, New York, USA, 2014.
  • P.J Olver, Applications of Lie groups to differential equations, vol. 107, Springer Science & Business Media, 2000.
  • N.K. Ibragimov, Elementary Lie group analysis and ordinary differential equations, volume 197, Wiley Chichester, 1999.
  • I. Lisle, “Equivalence transformations for classes of differential equations”, Ph.D dissertation, Dept. of Mathematics, University of British Columbia, 1992.
  • S. Lie, “Über integralinvarianten und ihre verwertung für die theorie der differentialgleichungen, leipz. Berichte, vol. 49, pp. 369–410, 1897.
  • L.V. Ovsiannikov, “Group relations of the equation of non-linear heat conductivity”, In Dokl. Akad. Nauk SSSR, volume 125, pp. 492–495, 1959.
  • C. Bihlo, E.D. Santos, A. Bihlo, and R.O. Popovych, "Enhanced preliminary group classification of a class of generalized diffusion equations”, Communications in Nonlinear Science and Numerical Simulation, vol. 16, no. 9 pp. 3622-3638, 2011.
  • R. Zhdanov and V. Lahno, "Group classification of the general second-order evolution equation: semi-simple invariance groups."Journal of Physics A: Mathematical and Theoretical, vol. 40, no. 19 pp. 5083, 2007.
  • A.H. Bokhari, A. Y. Al Dweik, A. H. Kara, and F. D. Zaman, “A symmetry analysis of some classes of evolutionary nonlinear (2+ 1)-diffusion equations with variable diffusivity”, Nonlinear Dynamics, vol. 62, no. 1-2, pp. 127-138, 2010.
  • N.M Ivanova, C. Sophocleous and R. Tracina, “Lie group analysis of two dimensional variable-coefficient burgers equation”, Zeitschrift für Angewandte Mathematik und Physik (ZAMP), vol. 61, no. 5, pp. 793–809, 2010.
  • M.S. Bruzon, M.L. Gandarias, M. Torrisi and R. Tracina, “On some applications of transformation groups to a class of nonlinear dispersive equations”, Nonlinear Analysis: Real World Applications, vol. 13, no. 3, pp. 1139–1151, 2012.
  • M. Torrisi and R. Tracina, “Equivalence transformations and symmetries for a heat conduction model”, International journal of non-linear mechanics, vol. 33, no. 3, pp. 473–487, 1998.
  • V. Romano and M. Torrisi, “Application of weak equivalence transformations to a group analysis of a drift-diffusion model”, Journal of Physics A: Mathematical and General, vol. 32, no. 45, pp. 7953, 1999.
  • M. Torrisi and R. Tracina, “Second-order differential invariants of a family of diffusion equations”, Journal of Physics A: Mathematical and General, vol.38, no. 34, pp. 7519, 2005.
  • M.L. Gandarias, M. Torrisi and R. Tracina, “On some differential invariants for a family of diffusion equations”, Journal of Physics A: Mathematical and Theoretical, vol. 40, no. 30, pp. 8803, 2007.
  • N.H Ibragimov and C. Sophocleous, “Differential invariants of the one dimensional quasi-linear second-order evolution equation”, Communications in Nonlinear Science and Numerical Simulation, vol. 12, no. 7, pp. 1133–1145, 2007.
  • M. Torrisi and R. Tracina, “Exact solutions of a reaction–diffusion system for proteus mirabilis bacterial colonies”, Nonlinear Analysis: Real World Applications, vol. 12, no. 3, pp. 1865–1874, 2011.
  • C. Tsaousi, R. Tracina and C. Sophocleous, “Differential invariants for third order evolution equations” Communications in Nonlinear Science and Numerical Simulation, vol. 20, no. 2, pp. 352–359, 2015.
  • B.K. Harrison and F.B. Estabrook, “Geometric approach to invariance groups and solution of partial differential systems”, Journal of Mathematical Physics, vol. 2, no. 4, pp. 653-666. 1971.
  • É. Cartan, “Les systemes différentiels extérieurs et leurs applications géométriques, Hermann, Paris, 1971.
  • D. Edelen, “Applied exterior calculus”, Courier Corporation, GB., 1985.
  • E.S. Şuhubi, “Explicit determination of isovector fields of equivalence groups for balance equations of arbitrary order part II”, International journal of engineering science, vol. 43, no. 1, pp.1–15, 2005.