Schottky Yapılar Üzerine İnceleme ve Analiz Çalışması

Yüksek sıcaklık ve vakum altında metal ve yarı iletkenlerin sıkı kontak edilmesi durumunda oluşan metal-yarı iletken kontaklar üzerinde hala çok sayıda teorik ve deneysel çalışma yapılıyor olmasına rağmen metal ve yarı iletken arasındaki bariyerin oluşumu ve iletimi mekanizmaları henüz tam olarak aydınlatılmamıştır. Bu yapılar hakkında yapılan ilk detaylı çalışmalar W. Schottky tarafından yapıldığından, bu metal-yarı iletken kontaklar genellikle Schottky diyotlar/yapılar olarak bilinir. Geçmişten günümüze farklı fiziksel, kimyasal ve elektriksel özelliklere sahip çeşitli malzemeler kullanılarak arayüzey tabakalar olmaksızın veya yalıtkan, polimer ve ferroelektrik gibi arayüzey tabakalar içeren Schottky yapıların performansı arttırılmaya çalışılmıştır. Çok yüksek frekanslarda ve düşük ileri ön gerilimde çalışabilmesi ve çok hızlı anahtarlama kabiliyeti gibi diğer diyotlarda bulunmayan özellikleri, elektronik teknolojideki yaygın kullanımı ve gelişime açık teknolojiye sahip olması bilim insanlarını Schottky yapıları üzerinde çalışmaya teşvik etmektedir. Bu çalışmada, metal yarıiletken ve arayüzey tabakasına sahip metal yarıiletken Schottky yapıların bu alanda yapılan bilimsel çalışmalar da göz önüne alınarak incelenmesi, zaman içindeki gelişiminin gözlenmesi ile birlikte dünya ve Türkiye’de bu alanda yapılan akademik çalışmaların istatistiksel analizi yapılmıştır. Sonuçta, Türkiye'nin bilimsel çalışmalar bakımından dünyanın neresinde olduğunu açığa çıkartmak amaçlanmıştır. Aynı zamanda farklı MY yapılar üzerine yapılmış bilimsel çalışmaların Türkiye ve dünyada ne oranda karşılık gördüğü de ortaya konulmuştur. Web of Science veri tabanında Science Citation Index (SCI) tarafından taranan ve hem Türkiye’de hem de tüm dünyada yapılan akademik çalışmaların analizi veri madenciliği ile otomatik veri toplama yöntemleri ve Structured Query Language (SQL) sunucu yönetim stüdyosu programı kullanılarak yapılmıştır. İstatistiksel analiz sonuçları her alanda Schottky yapılar üzerine Türkiye ve dünyada yapılan akademik çalışmaların nerede ise her sene artış gösterdiğini göstermektedir.

Review and Analysis Study on Schottky Structures

Although quite a few number of theoretical and experimental studies are still carried out on metal-semiconductor contacts which forms in case of a tight contact of metal and semiconductor under high temperature and vacuum, the formation and transmission mechanisms of the barrier between metal and semiconductor have not yet been fully elucidated. Since the initial detailed studies about these structures were made by W. Schottky, these metal-semiconductor contacts are generally known as Schottky diodes/structures. It has been tried to improve the performance of the Schottky structures without or with interfacial layers such as insulator or polymer and ferroelectric by using various materials with different physical, chemical and electrical properties from past to present. The significant features not found in other diodes, such as its ability to operate at very high frequencies and low forward bias, and very fast switching capability, the widespread use in electronic technology, and the fact that its technology is open for development encourage scientists to study on Schottky structures. Together with the investigation of the metal-semiconductor and the metal-semiconductor with interfacial layer Schottky structures by considering the scientific studies on Schottky structures, the observation of its progress over time, the statistical analysis of academic studies in this area over the world and Turkey have been made in this study. Ultimately, it is aimed to reveal the situation of Turkey over the world in terms of scientific studies. At the same time, to what extent the scientific studies on distinct MS structures get reciprocity in the world and in Turkey is set forth. The analysis of the academic studies which are scanned by Science Citation Index (SCI) in Web of Science database and made in Turkey as well as all over the world were performed with data mining by utilizing automated data collection methods and SQL Server Management Studio program. The statistical analysis results indicate that the academic studies made for every type of Schottky structures over the world and Turkey increase for almost every year.

___

  • [1] Sze S. M., Kwok K. Ng., “Physics of Semiconductor Devices” 3rd ed., John Wiley & Sons, 9780470068328, New Jersey, (2007).
  • [2] Rhoderick E. H. and Williams R. H., “Metal Semicondutor Contacts”, 2nd ed., Oxford Press, 0198593368, USA, (1988).
  • [3] Northrop D. C. and Rhoderick E. H, “The Physics of Shottky barriers, in Impedance Devices”, Solid State Electronics, 4: 37-73, (1978).
  • [4] Sharma B. L., “Metal-Semiconductor Schottky Barrier Junctions and Their Applications”, Plenum Press, 9781468446555, New York, (1984).
  • [5] Soylu M. and Yakuphanoglu F., “Photovoltaic and interface state density properties of the Au/n-GaAs Schottky barrier solar cell”, Thin Solid Films, 519: 1950-1954, (2011).
  • [6] Farag A. A. M., Yahia I. S. And Fadel M., “Electrical and photovoltaic characteristics of Au/n-CdS Schottky diode”, Int. J. Hydrogen Energ., 34: 4906-4913, (2009).
  • [7] Sharma A. T., Shahnawaz, Kumar S., Katharria Y. S and Kanjilal D., “Barrier modification of Au/n-GaAs Schottky diode by swift heavy ion irradiation”, Nuclear Instruments and Methods in Physics Research Section B, 263: 424, (2007).
  • [8] Demirezen S., Özavcı E. and Altındal Ş., “The effect of frequency and temperature on capacitance/conductance–voltage (C/G–V) characteristics of Au/n-GaAs Schottky barrier diodes (SBDs)”, Materials Science in Semiconductor Processing, 23: 1-6, (2014).
  • [9] Gökçen M., Altuntaş H., Altındal Ş. and S. Özçelik, “Frequency and voltage dependence of negative capacitance in Au/SiO2/n-GaAs structures”, Materials Science in Semiconductor Processing, 15: 41–46, (2012).
  • [10] Bhajantri R. F., Ravindrachary V., Harisha A., Ranganathalah C. and Kumaraswamy G. N., “Effect of barium chloride doping on PVA microstructure positron annihilation study”, Appl. Phys. A, 87: 797-805, (2007).
  • [11] Afandiyeva I. M., Dökme İ., Altındal Ş., Bülbül M. M. and Tataroğlu A., “Frequency and voltage effects on the dielectric properties and electrical conductivity of Al–TiW–Pd2Si/n-Si structures”, Microelectronic Engineering, 85: 247-252, (2008).
  • [12] Bilkan Ç., Zeyrek S., San S. E. and Altındal Ş., “A compare of electrical characteristics in Al/p-Si (MS) and Al/C2OH12/p-Si (MPS) type diodes using current–voltage (I–V) and capacitance–voltage (C–V) measurements”, Materials Science in Semiconductor Processing, 32: 137-144, (2015).
  • [13] Sze S. M., Crowell C.R. and Khang D., “Photoelectric Determination of TheImage Force Dielectric Constant For Hot Electrons in Schottky Barriers”, J.Appl. Phys., 35: 2534-2536, (1964).
  • [14] Bethe H. A., “Theory of The Boundry Layer of Crystal Rectifiers”, 43, Radiation Laboratory, Massachusetts Institute of Technology, 12, Cambridge, (1942).
  • [15] Crowell C. R. and S.M. Sze, “Current transport in metalsemiconductorbarriers”, Solid-State Electronics, 9: 1035-1048, (1966).
  • [16] Rideout V. L., “A Review of The Theory, Technology and Applications of Metal-Semiconductor Rectifiers”, Thin Solid Films, 48: 261-266, (1978),
  • [17] Heine V., “Theory of Surface States”, Phys. Rev., 6A, 138: 1689-1696, (1965).
  • [18] Crowell C. R. and Roberts G. I., “Surface State and Interface Effects on The Capacitance-Voltage Relationship in Schottky Barriers”, J. Appl. Phys., 40: 3726-3730, (1969).
  • [19] Card H. C., Rhoderick E. H., “Studies of Tunnel MOS Diodes I. Interface Effects in Silicon Schottky Diodes”, J. Phys. D: Appl. Phys., 4: 1589-1601, (1971).
  • [20] Levine J., “Schottky Barrier Anomalies and Interface States”, J. Appl. Phys., 42: 3991-3999, (1971).
  • [21] Borrego J. M., Gutmann R.J. and Ashok S., “Interface State Density in Au/n-GaAs Schottky Diodes”, Solid State Elect., 20: 125-132, (1977).
  • [22] Wu C.Y., “Interfacial Layer Theory of The Schottky Barrier Diodes”, J. Appl. Phys., 51: 3786-3789, (1980).
  • [23] Chandra M. M., Prasad M., J. of Solid State Phys. A, 77: 1, (1983).
  • [24] Gomila G., Rubi M., “Relation for The Nonequilibrium Population of The Interface States: Effects on The Bias Dependence of The Ideality Factor”, J.Appl. Phys., 81: 2674-2681, (1997).
  • [25] Baranwal V., Kumar S., Pandey A. C. and Kanjilal D., “Effect of ion irradiation on current–voltage characteristics of Au/n-GaN Schottky diodes”, Journal of Alloys and Compounds, 480: 962-965, (2009).
  • [26] Hamdaoui N., Ajjel R., Salem B. and Gendry M., “Distribution of barrier heights in metal/n-InAlAs Schottky diodes from current–voltage–temperature measurements”, Materials Science in Semiconductor Processing, 26: 431-437, (2014).
  • [27] Vali I. P., Shetty P. K., Mahesha M. G., Petwal V. C., Dwivedi J. and Choudhary R. J., “Tuning of Schottky barrier height of Al/n-Si by electron beam irradiation”, Applied Surface Science, 407: 171-176, (2017).
  • [28] Sing A., Reinhard K. C. and Anderson W. A., “Temperature dependence of the electrical characteristics of Yb/p-InP tunnel metal-insulator-semiconductor junctions”, J. Appl. Phys., 68: 3475-3479, (1990).
  • [29] Chattopadhyay P. and Daw A. N., “On the current transport mechanism in a metalinsulator-semiconductor diode”, Solid State Electron., 29: 555-560, (1986).
  • [30] Yu A. Y. C., Snow E. H., “Surface Effects on Metal-Silicon Contacts”, J. Appl. Phys., 39: 3008, (1968).
  • [31] Depas M., R., Van Meirhaegh L., Laflere W. H. and Cardon F., “Electrical characteristics of Al/SiO2/n-Si tunnel diodes with an oxide layer grown by rapid thermal oxidation”, Solid State Electron., 37: 433-441, (1994).
  • [32] Altındal Ş., Karadeniz S., Tuğluoğlu N. and Tataroğlu A., “The role of interface states and series resistance on the I-V and C-V characteristics in Al/SnO2 p-Si Schottky diodes”, Solid State Electron., 47(10): 1847-1854, (2003).
  • [33] Goetzberger A., Klausmann E. and Schulz M. J., “Interface states on semiconductor/insulator surfaces”, CRC Critical Reviews in Solid State Sciences, 6: 226-233, (1976).
  • [34] Hudait M. K. and Krupanidhi S.B., “Effects of thin oxide in metal-semiconductor and metal-insulator-semiconductor epi-GaAs Schottky diodes”, Solid-State Electron., 44: 1089-1097, (2000).
  • [35] Kılıçoğlu T. and Asubay S., “The effect of native oxide layer on some electronic parameters of Au/n-Si/Au–Sb Schottky barrier diodes”, Physica B, 368: 58–63, (2005).
  • [36] Tataroğlu A. and Altındal Ş., “The analysis of the series resistance and interface states of MIS Schottky diodes at high temperatures using I–V characteristics”, Journal of Alloys and Compounds, 484: 405–409, (2009).
  • [37] Chen G., Yu J. and Lai P.T., “A study on MIS Schottky diode based hydrogen sensor using La2O3 as gate insulator”, Microelectronics Reliability, 52: 1660-1664, (2012).
  • [38] Tuan T. T. A. and Kuo D.-H., Materials Science in Semiconductor Processing, 30: 314-320, (2015).
  • [39] Tan S. O., Tecimer H. U., Çiçek O., Tecimer H., Orak İ. and Altındal Ş., “Electrical characterizations of Au/ZnO/n-GaAs Schottky diodes under distinct illumination intensities”, J. Mater. Sci. Electron, 27: 8340-8347, (2016).
  • [40] Ichenko V. V., Marin V. V., Lin S. D., Panarn K. Y., Buyanin A. A. and Tretyak O. V., “Room temperature negative differential capacitance in self-assembled quantum dots”, J. Phys. D Appl. Phys., 41: 235107, (2008).
  • [41] Tecimer H., Türüt A., Uslu H. Altındal Ş. and Uslu İ., “Temperature dependent current-transport mechanism in Au/(Zn-doped) PVA/n-GaAs Schottky barrier diodes (SBDs)”, Sensors and Actuators A, 199: 194-201, (2013).
  • [42] Werner J. and Guttler H., “Barrier inhomogeneities at Schottky contacts”, Journal of Applied Physics, 69: 1522-1533, (1991).
  • [43] Sakr G. B. and Yahia I. S., “Effect of illumination and frequency on the capacitance spectroscopy and the relaxation process of p-ZnTe/n-CdMnTe/GaAs magnetic diode for photocapacitance applications”, J. Alloys Compd., 503: 213-219, (2010).
  • [44] Yakuphanoğlu F. and Okur S., “Analysis of electronic parameters and interface states of boron dispersed triethenolemine/p-Si structure by AFM, I-V, C-V-f and G/w-V-f techniques”, Microelectronic Engineering, 87: 30-34, (2010).
  • [45] Aydoğan Ş., İncekara Ü. and Türüt A., “Determination of contact parameters of Au/Carmine/n-Si Schottky device”, Thin Solid Films, 518: 7156-7160, (2010).
  • [46] Gupta R. K. and Singh R. A, “Fabrication and characteristics of Schottky diode based on composite organics semiconductor”, Composites and Science and Technology, 65: 677-681, (2005).
  • [47] Yahia I. S., Farag A. A., F. Yakuphanoğlu and Farooq W. A., “Temperature dependence of electronic parameters of organic Schottky diode based on fluorescein sodium salt”, Synthetic Metals, 161: 881-887, (2011).
  • [48] Çiçek O., Uslu Tecimer H., Tan S. O., Tecimer H., Altındal Ş and İ. Uslu, “Evaluation of electrical and photovoltaic behaviours as comparative of Au/n-GaAs (MS) diodes with and without pure and graphene (Gr)- doped polyvinyl alcohol (PVA) interfacial layer under dark and illuminated conditions”, Composites Part B, 98: 260-268, (2016).
  • [49] Yakuphanoğlu F., Kandaz M. and Senkal B.F., “Current–voltage and capacitance– voltage characteristics of Al/p-type silicon/organic semiconductor based on phthalocyanine rectifier contact”. Thin Solid Films, 516: 8793–8796, (2008).
  • [50] Vural Ö., Şafak Y., Altındal Ş. and A. Türüt, “Current and voltage characteristics of Al/Rhodamine-101/n-GaAs structures in the wide temperature range”, Current Applied Physics, 10: 761, (2010).
  • [51] Fujimori Y., Nakamura T. and Kamisawa A., “Properties of ferroelectric memory FET using Sr2(Ta, Nb)2O7 thin film”, J. Appl. Phys, 38: 2285-2288, (1999).
  • [52] Tokomitsu E., Fujii G. and Ishivara H., “Nonvolatile ferroelectric-gate fieldeffect transistors using SrBi2Ta2O9/Pt/SrTa2O6/SiON/Si structures”, Applied Physics Letter, 75(4): 575-577, (1999).
  • [53] Fujisaki Y., Iseki K. and Ishiwara H., “Long retention performance of a MFIS device achieved by introducing high-k Al2O3/Si3N4/Si buffer layer”, Material Research Society Symposium Proceedings, 786: 297 (2004).
  • [54] Wu D., Li A. and Ming N., “Characteristics of metal-ferroelectric-insulatorsemiconductor structure using La-modified Bi4Ti3O12 as the ferroelectric layer”, Microelectronic Engineering, 66: 773-778, (2003).
  • [55] Yang Ch. H., Wang Zh., Xu H. Y., Sun X. Q. and J. R. Han, “Samarium doped Bi4Ti3O12 thin films grown on SiO2/p-Si (111) by spin coating metalorganic solution decomposition method, Materials Chemistry and Physics, 88: 67- 70, (2004).
  • [56] Joshi P. C. and Krupanidh S. B., “Structural and electrical studies on rapid thermally processed ferroelectric Bi4Ti3O12 thin films by metalloorganic solution deposition”, Journal of Applied Physics, 72(12): 5817-5819, (1992).
  • [57] Lea K.C., Kim W.S., Park H., Jeon H. and Pae Y.H., “Thermal-stress stability of yttrium oxide as a buffer layer of metal-ferroelectric-insulatorsemiconductor field effect transistor”, Thin Solid Films, 473: 335– 339, (2005).
  • [58] Hill W. A. C. and Coleman C. C., “A single-frequency approximation for interface-state density determination”, Solid State Electronics, 23: 987-993, (1980).
  • [59] Okuyama M., Takahashi M., Sugiyama H., Nakaiso T., Kodama K. and Noda M., “An Analysis of Effects of Device Structures on Retention Characteristics in MFIS Structures, Applications of Ferroelectrics, IEEE, ISAF 2000, 12th IEEE International Symposium on Applications of Ferroelectrics, Kyoto, 337-340, (2000).
  • [60] Altındal Ş., Parlaktürk F., Tataroğlu A., Parlak M., Sarmasov S.N. and Agasiev A.A., “The temperature profile and bias dependent series resistance of Au/ Bi4Ti3O12/SiO2/n-Si (MFIS) structures”, Vacuum, 82: 1246–1250, (2008).
  • [61] Bülbül M. M., Altındal Ş., Parlaktürk F. and Tataroğlu A., “The density of interface states and their relaxation times in Au/ Bi4Ti3O12 /SiO2/n-Si(MFIS) structures”, Surf. Interface Anal., 43: 1561–1565, (2011).
  • [62] Çetinkaya H. G., Yıldırım M., Durmuş P. and Altındal Ş., “Correlation between barrier height and ideality factor in identically prepared diodes of Al/ Bi4Ti3O12 /p-Si (MFS) structure with barrier inhomogeneity”, Journal of Alloys and Compounds, 721: 750-756, (2017).
  • [63] Yu J., Wang H., Dong X., Zhou W., Wang Y., Zheng Y. and J. Zhao, “Fabrication and characteristics of Au/PZT/BIT/p-Si ferroelectric memory diode”, Solid-State Electron., 45: 411-415, (2001).
  • [64] Dakhel A. A., “Nanocrystalline Pr-doped ZnO insulator for metal–insulator–Si Schottky diodes”, Journal of Crystal Growth, 311: 4183-4187, (2009).
  • [65] Tataroğlu A. and Altındal Ş., “Gamma-ray irradiation effects on the interface states of MIS structures”, Sensors and Actuators A: Physical, 151: 168-172, (2009).
  • [66] Chen G., Yu J. and Lai P.T., “A study on MIS Schottky diode based hydrogen sensor using La2O3 as gate insulator”, Microelectronics Reliability, 52: 1660-1664, (2012).
  • [67] Ueda K., Soumiya T. and Asano H., “Ferromagnetic Schottky junctions using diamond semiconductors”, Diamond and Related Materials, 25: 159-162, (2012).
  • [68] Filip L. D., Pintilie L., Stancu V. and Pintilie I., “Simulation of the capacitance-voltage characteristic in the case of epitaxial ferroelectric films with Schottky contacts”, Thin Solid Films, 592: 200-206, (2015).
  • [69] Chen J., Lv J. and Wang Q., “Electronic properties of Al/MoO3/p-InP enhanced Schottky barrier contacts,” Thin Solid Films, 616: 145-150 (2016).
  • [70] Bartolomeo A. D., “Graphene Schottky diodes: An experimental review of the rectifying graphene/semiconductor heterojunction”, Physics Reports, 606: 1-58, (2016).
  • [71] Tan S.O., Türker İ. and Toku T., “The scientific studies on smart grid in selected European countries”, MATEC Web of Conferences 112, 10012, (2017), DOI: 10.1051/matecconf/201711210012.