NiTi Esaslı Saclara Uygulanan Farklı Çözündürme ve Yaşlandırma Isıl İşlemlerinin Metalografik ve Mekanik Özelliklere Etkileri

Bu çalışmada 45ºC ve 80ºC‘de faz dönüşümü gösteren 1 mm kalınlığında NiTi saclar kullanılmıştır. Öncelikle, eğilebilirliği incelemek için üç nokta eğme testleri yapılmıştır. Bundan sonra bükülmüş saclardan alınmış numunelere sırasıyla; 750ºC, 800ºC, 850ºC ve 900ºC’de 1 saat çözündürme ısıl işlemleri uygulanmıştır. Bu numunelere sırası ile 300ºC’de 15, 30, 45, 60, 75 ve 90 dakika (dk.) süreyle yaşlandırma ısıl işlemi uygulanmıştır. Isıl işlem parametrelerinin etkilerini incelemek için Optik Mikroskop, Alan Emisyon Taramalı Elektron Mikroskobu (FESEM), Element Dağılım Spektrometresi (EDS) ve Haritalama (MAP) analizleri gerçekleştirilmiştir. Mekanik etkileri incelemek için her bir ısıl işlemden sonra makro sertlik verileri alınmıştır. Ayrıca Dinamik Mekanik Analiz (DMA) ile malzemenin yük altındaki mekanik davranışı incelenmiştir. Sonuç olarak, yaşlandırma ısıl işlemi sayesinde mekanik özellikler (sertlik ve depolama modülü) iyileştirilebilmiştir. En yüksek sertlik değeri, 80°C dönüşüm sıcaklığına sahip numunede, 900°C’de çözündürme ve 300°C’de 75 dk. yaşlandırma sonrası 414HV olarak ölçülmüştür. Ayrıca, depolama modülünde artış, tanδ değerinde ise düşüş meydana gelmiştir. NiTi alaşımlarının süper elastik özelliklerinden faydalanabilmek için, dönüşüm sıcaklıklarının üzerindeki sıcaklıkların kullanılması gerekliliği depolama modülü ölçümleri ile görülmüştür. 45°C dönüşüm sıcaklığına sahip numune için dönüşüm sıcaklığı altında depolama modül değeri ~21500MPa iken dönüşüm tamamlandıktan sonra ~ 28500MPa olarak ölçülmüştür.

Effects of Different Dissolution and Aging Heat Treatments on Metallographic and Mechanical Properties of NiTi Based Sheets

In this study; 1-mm-thick NiTi sheets showing phase transformation at 45ºC and 80ºC were used. First, three-point bending tests were performed to investigate the bendability. Later, solution heat treatments were applied to the samples taken from the bent sheets for 1 hour at 750ºC, 800ºC, 850ºC and 900ºC respectively. Aging heat treatment was applied for 15, 30, 45, 60, 75 and 90 minutes (min.) at 300ºC to these samples. Optical Microscope, Field Emission Scanning Electron Microscopy (FESEM), Element Dispersion Spectroscopy (EDS) and MAPPING (MAP) analyses were carried out to examine the effects of the heat treatment parameters. Macro hardness data were taken to examine the mechanical effects after each heat treatment. Moreover, the mechanical behavior of the material under load was investigated by Dynamic Mechanical Analyses (DMA). As a result, mechanical properties (hardness and storage modulus) have been improved by aging heat treatments. The highest hardness value was measured as 414HV after solution heat treatment at 900ºC and aging heat treatment at 300ºC for 75 minutes on the sample showing phase transformation at 80ºC. Furthermore, an increase in storage modulus and a decrease in tanδ value occurred. To benefit from super elastic properties of NiTi alloys, the necessity of using temperatures above the transformation temperatures was observed with the storage modulus measurements. Storage modulus value under transformation temperature was ~21500MPa while it was measured as ~28500MPa after the transformation was completed for the sample with 45°C transformation temperature.

___

  • [1] Morgan N. B., “Medical shape memory alloy applications—the market and its products”, Materials Science and Engineering: A, 378(1-2): 16-23, (2004).
  • [2] Jani J. M., Leary M., Subic A. and Gibson M. A., “A review of shape memory alloy research, applications and opportunities”, Materials & Design (1980-2015), 56: 1078-1113, (2014).
  • [3] Duerig T. W., Melton K. N. and Stöckel D. W. C. M., “Engineering aspects of shape memory alloys”, Butterworth-Heinemann, (2013).
  • [4] Oliveira J. P., Miranda R. M. and Braz Fernandes F. M., “Welding and Joining of NiTi Shape Memory Alloys: A Review”, Progress in Materials Science, 88: 412–466, (2017).
  • [5] Otsuka K. and Ren X., “Physical metallurgy of Ti-Ni-based shape memory alloys”, Progress in Materials Science, 50: 511–678, (2005).
  • [6] Yu C., Kang G. and Kan Q., “A micromechanical constitutive model for anisotropic cyclic deformation of super-elastic NiTi shape memory alloy single crystals”, Journal of the Mechanics and Physics of Solids, 82: 97–136, (2015).
  • [7] Karaca H. E., Kaya I., Tobe H., Basaran B., Nagasako M., Kainuma R. and Chumlyakov Y, “Shape memory behavior of high strength Ni54Ti46 alloys”, Materials Science and Engineering: A, 580: 66-70, (2013).
  • [8] Saedi S., Turabi A. S., Andani M. T., Moghaddam N. S., Elahinia M. and Karaca, H. E., “Texture, aging, and superelasticity of selective laser melting fabricated Ni-rich NiTi alloys”, Materials Science and Engineering: A, 686: 1-10, (2017).
  • [9] Miyazaki S., Ohmi Y., Otsuka K. and Suzuki Y., “Characteristics of deformation and transformation pseudoelasticity in Ti-Ni alloys”, Le Journal de Physique Colloques, 43: C4-255, (1982).
  • [10] Nishida M., Wayman C. M. and Honma T., “Precipitation processes in near-equiatomic TiNi shape memory alloys”, Metallurgical Transactions A, 17(9): 1505-1515, (1986).
  • [11] Meng X. L., Cai W., Chen F. and Zhao L. C., “Effect of aging on martensitic transformation and microstructure in Ni-rich TiNiHf shape memory alloy”, Scripta materialia, 54(9): 1599-1604, (2006).
  • [12] Sehitoglu H., Anderson R., Karaman I., Gall K. and Chumlyakov Y., “Cyclic deformation behavior of single crystal NiTi”, Materials Science and Engineering: A, 314(1-2): 67-74, (2001).
  • [13] Karaca H. E., Saghaian S. M., Basaran B., Bigelow G. S., Noebe R. D. and Chumlyakov Y. I., “Compressive response of nickel-rich NiTiHf high-temperature shape memory single crystals along the [1 1 1] orientation”, Scripta Materialia, 65(7): 577-580, (2011).
  • [14] Gall K., Sehitoglu H., Anderson R., Karaman I., Chumlyakov Y. I. and Kireeva I. V., “On the mechanical behavior of single crystal NiTi shape memory alloys and related polycrystalline phenomenon”, Materials Science and Engineering: A, 317(1-2): 85-92, (2001).
  • [15] Aksöz S., Altınışık G., Elverişli E. E. and Bostan, B., “NiTi ŞBA Tozlarında B2-R-B19' Fazlarına Sıcaklık ve Deformasyonun Etkilerinin İncelenmesi”, Gazi Üniversitesi Fen Bilimleri Dergisi Part C: Tasarım ve Teknoloji, 6(3): 570-580, (2018).
  • [16] Aksöz S., “Microstructural and mechanical investigation of NiTi intermetallics produced by hot deformation technique”, Arabian Journal for Science and Engineering, 42(6): 2573-2581. (2017).
  • [17] Aksöz S. and Bostan, B., “Characteric Proporties of NiTi Shape Memory Alloy Powders with Powder Injection Molding”, In International Multidisciplinary Microscopy Congress, Springer, Cham, 129-141, (2014).
  • [18] Aksöz S., Demir Ü. and Bostan B., “NiTi SMA parts production with different porosity ratios”, Acta Physica Polonica A, 135: 980-983, (2019).
  • [19] Wen, Shifeng, et al. "Effect of Ni content on the transformation behavior and mechanical property of NiTi shape memory alloys fabricated by laser powder bed fusion”, Optics & Laser Technology, 134: 106653, (2021).
  • [20] Hornbuckle B. C., Xiao X. Y., Noebe R. D., Martens R., Weaver M. L. ve Thompson G. B., “Hardening behavior and phase decomposition in very Ni-rich Nitinol alloys”, Materials Science and Engineering: A, 639: 336-344, (2015).
  • [21] Zhang F., Zheng L., Wang F., and Zhang H., “Effects of Nb additions on the precipitate morphology and hardening behavior of Ni-rich Ni55Ti45 alloys”, Journal of Alloys and Compounds, 735: 2453-2461, (2018).
  • [22] Abbasi-Chianeh V., Khalil-Allafi J. and Kazemi-Choobi K., “The effect of post-deformation aging on superelastic properties of Ni50. 9Ti thin wires attaining micro and nano-substructure”, Journal of Alloys and Compounds, 563: 44-50, (2013).
  • [23] Zhang Y., Jiang S., Liang Y. and Hu, L., “Simulation of dynamic recrystallization of NiTi shape memory alloy during hot compression deformation based on cellular automaton”, Computational Materials Science, 71: 124-134, (2013).
  • [24] Hu L., Jiang S., Zhang Y., Zhao Y., Liu S. and Zhao C., “Multiple plastic deformation mechanisms of NiTi shape memory alloy based on local canning compression at various temperatures”, Intermetallics, 70: 45-52, (2016).
  • [25] Saburi T., Nenno S. and Fukuda T., “Crystal structure and morphology of the metastable X phase in shape memory Ti-Ni alloys”, Journal of the Less Common Metals, 125: 157-166, (1986).
  • [26]https://www.mt.com/hr/hr/home/supportive_content/matchar_apps/MatChar_UC413.html