Doğalgaz Yakıtlı Bir Kombine Çevrim Santralinin Enerji ve Ekserji Analizi: Parametrik Çalışma

Nükleer, biyoyakıtlar ve yenilenebilir enerji kaynaklarının enerji üretimindeki kullanımları gün geçtikçe artsa da enerji üretiminde fosil yakıt kullanımı yaygın olarak devam etmektedir. Fosil yakıtların daha verimli bir şekilde kullanılmasını sağlayan en iyi seçeneklerin başında kombine çevrim santralleri gelmektedir. Brayton ve Rankine çevrimlerinin birleştirilmesinden oluşan bu santraller bir taraftan fosil yakıtları daha verimli kullanırken, diğer yandan çevreye daha az zarar vermektedir. Bu çalışmada doğalgazla çalışan bir kombine çevrim santralinin enerji ve ekserji analizleri, santralin gerçek operasyon verileri kullanılarak gerçekleştirilmiştir. Ortam sıcaklığının ve basıncının sırasıyla 25,4 °C ve 98,1 kPa olduğu şartlarda gerçekleştirilen analizler sonucunda, santralin ekserji verimi % 61,2 olarak bulunurken, en yüksek ekserji kaybına sahip olan bileşen 89 MW ile yanma odası olmuştur. Ekserji verimi en yüksek santral bileşeni ise % 96,4 ile yoğuşturucu olarak tespit edilmiştir. Santralden elde edilen toplam güç 205 MW olarak hesaplanırken Brayton çevriminin gücü 134 MW, Rankine çevriminin gücü 71 MW olarak hesaplanmıştır. Ortam sıcaklığı ile gaz türbini giriş sıcaklığının arttırılmasının etkileri bu çalışmada ayrıca incelenmiştir.

Energy and Exergy Analyses of a Natural Gas Fired Combined Cycle Power Plant: Parametric Study

Despite the increasing use of nuclear, biofuels, and renewable energy sources in energy production, the use of fossil fuels in energy production continues widely. Combined cycle power plants are among the best options that enable the more efficient use of fossil fuels. These power plants, which use a combination of the Brayton and Rankine cycles, use fossil fuels more efficiently while also cause less environmental damage. In this study, energy and exergy analysis of a natural gas-fired combined cycle power plant was carried out using the actual operational data of the power plant. The exergy efficiency of the power plant was determined to be 61.2 % as a result of the analyses performed under conditions where the ambient temperature and pressure were 25.4 °C and 98.1 kPa, respectively, while the component with the highest exergy destruction was the combustion chamber with 89 MW. The condenser was determined to be the most exergy efficient component of the power plant, with a 96.4 % efficiency rating. While the total power obtained from the power plant is 205 MW, the power of the Brayton cycle is 134 MW and the power of the Rankine cycle is 71 MW. In this study, the effects of increasing the ambient temperature and the gas turbine inlet temperature were also investigated.

___

  • [1] Ali M. S., Shafique Q. N., Kumar D., Kumar S., and Kumar S., “Energy and exergy analysis of a 747-MW combined cycle power plant Guddu”. International Journal of Ambient Energy, 41(13): 1495-1504, (2020).
  • [2] Ibrahim T. K., Mohammed M. K., Awad O. I., Abdalla A. N., Basrawi F., Mohammed M. N., and Mamat R., “A comprehensive review on the exergy analysis of combined cycle power plants”. Renewable and Sustainable Energy Reviews, 90: 835-850, (2018).
  • [3] Aliyu M., AlQudaihi A. B., Said S. A., and Habib M. A., “Energy, exergy and parametric analysis of a combined cycle power plant”. Thermal Science and Engineering Progress, 15: 100450, (2020).
  • [4] Kotowicz J., and Brzęczek M., “Analysis of increasing efficiency of modern combined cycle power plant: A case study”. Energy, 153: 90-99, (2018).
  • [5] Koç Y., and Yağlı H., “Isı-güç kombine sistemlerinde kullanılan kalina çevriminin enerji ve ekserji analizi”. Politeknik Dergisi, 23(1): 181-188, (2020).
  • [6] Karaağaç M. O., Kabul A., and Oğul H., “First-and second-law thermodynamic analyses of a combined natural gas cycle power plant: Sankey and Grossman diagrams”. Turkish Journal of Physics, 43(1): 93-108, (2019).
  • [7] Dincer I., and Rosen M. A., “Exergy: energy, environment and sustainable development”. İkinci Baskı, Elsevier, İngiltere (2013).
  • [8] Mohtaram S., Sun H., Lin J., Chen W., and Sun Y., “Multi-Objective Evolutionary Optimization & 4E analysis of a bulky combined cycle power plant by CO2/CO/NOx reduction and cost controlling targets”. Renewable and Sustainable Energy Reviews, 128: 109898, (2020).
  • [9] Prakash D., and Singh O., "Thermo-economic study of combined cycle power plant with carbon capture and methanation”. Journal of Cleaner Production, 231: 529-542, (2019).
  • [10] Khan M. N., and Tlili I., “New advancement of high performance for a combined cycle power plant: thermodynamic analysis”. Case Studies in Thermal Engineering, 12: 166-175, (2018).
  • [11] Şen G., Nil M., Mamur H., Doğan H., Karamolla M., Karaçor M., and Bhuiyan M. R. A., “The effect of ambient temperature on electric power generation in natural gas combined cycle power plant-A case study”. Energy Reports, 4: 682-690, (2018).
  • [12] Abuelnuor A. A. A., Saqr K. M., Mohieldein S. A. A., Dafallah K. A., Abdullah M. M., and Nogoud Y. A. M. "Exergy analysis of Garri “2” 180 MW combined cycle power plant”. Renewable and Sustainable Energy Reviews, 79: 960-969, (2017).
  • [13] Ahmadi G. R., and Toghraie D., "Energy and exergy analysis of Montazeri steam power plant in Iran”. Renewable and Sustainable Energy Reviews, 56: 454-463, (2016).
  • [14] Sahin A. Z., Al-Sharafi A., Yilbas B. S., and Khaliq A., "Overall performance assessment of a combined cycle power plant: an exergo-economic analysis”. Energy Conversion and Management, 116: 91-100, (2016).
  • [15] Aljundi I. H., “Energy and exergy analysis of a steam power plant in Jordan”. Applied Thermal Engineering, 29(2-3): 324-328, (2009).
  • [16] Dincer I., and Al‐Muslim H., “Thermodynamic analysis of reheat cycle steam power plants”. International Journal of Energy Research, 25(8): 727-739, (2001).
  • [17] Bejan A., Tsatsaronis G., and Moran M. J., “Thermal Design and Optimization” Birinci Baskı, John Wiley & Sons, New York, USA, (1996).
  • [18] Kotas T. J., “The Exergy Method of Thermal Plant Analysis”. Birinci Baskı, Krieger, Melbourne, USA, (1985).
  • [19] F-chart software, www.fchart.com, Erişim tarihi: 24.03.2020