Rayleigh-Taylor Kararsızlığının Büyüme Hızına Manyetik Alanın Etkisi Nano Yapılı Gözenekli Kaplamaların Kullanılması Eylemsiz Hapsedilme Füzyon Yakıt Hedeflerinde

Son yıllarda, atalet önlerine nanoyapılı gözenekli astarlar uygulayarak eylemsiz hapsetme füzyonu (ICF) hedeflerinde hidrodinamik kararlılığa ulaşmak bilim adamları için özel bir öneme sahip olmuştur. Hidrodinamik kararsızlıklar, en önemlisi Rayleigh-Taylor kararsızlığıdır (RTI), birçok fiziksel olayda önemli bir rol oynar. Böyle, bu istikrarsızlıkların büyüme hızının nasıl düşürüleceği, ICF yakıt hedeflerinde önemli bir amaçtır. Bu çalışmada, RTI büyüme hızının azaltılması çeşitli füzyon yakıtı hedefleri için iki aşamada incelenir: Birinci, güçlü bir manyetik alanın yokluğunda ablasyon önlerine farklı nanoyapılı gözenekli astarların uygulanmasının RTI büyüme hızının azalmasına neden olduğu belirtilmektedir ve ikinci, bu hedeflerin ablatif yüzeyine uygulanan manyetik alana eşlik eden ablasyon cephesinde çeşitli nano yapılı gözenekli astarların kullanılmasının, RTI büyüme hızının daha fazla azalmasına yol açtığı gösterilmiştir. Bu iki fazın her ikisinde de, RTI büyüme hızı, koruma denklemleri, sınır koşulları ve yaklaşık yöntemler kullanılarak analitik olarak elde edilir ve nanoyapılı gözenekli kaplamaların uygulanması ve güçlü bir manyetik alan uygulanmasının RTI büyüme hızını azaltacağı belirtilmektedir.

The Influence of Magnetic Field on the Growth Rate of Rayleigh-Taylor Instability Using Nano-Structured Porous Linings in Inertial Confinement Fusion Fuel Targets

Hydrodynamic instabilities, the most significant of which is Rayleigh-Taylor instability (RTI), play a significant role in many physical phenomena. So how to decrease the growth rate of these instabilities is an important purpose in ICF fuel targets. In this research, reducing the growth rate of RTI for various fusion fuel targets has been investigated in two stages: First, it is indicated that applying different nanostructured porous linings at the ablation front of them in the absence of a strong magnetic field causes to decrease RTI growth rate and second, it is shown that using various nanostructured porous linings at the ablation front of these targets accompanying magnetic field exerting to the ablative surface of them, leads to more reduction of RTI growth rate. In both of these two phases, RTI growth rate is acquired analytically using conservation equations, boundary conditions and approximate methods and it is indicated that applying nanostructured porous linings and exerting a powerful magnetic field, will decrease RTI growth rate.

___

  • Abarzhi S. I., Nishihara K. and Glimm J., “Rayleigh-Taylor and Richtmyer-Meshkov instabilities for fluids with a finite density ratio”, Physics Letters A, 317, 470 (2003).
  • [2] Piriz A. R., Cortázar O. D., López Cela J. J. and Tahir N. A., “The Rayleigh-Taylor instability”, American Journal of Physics, 74, 1095 (2006).
  • [3] Atzeni S. and Temporal M., “Mechanism of growth reduction of the deceleration-phase ablative Rayleigh-Taylor instability”, Physical Review E, 67, 057401 (2003).
  • [4] Basko M. M., “High gain DT targets for heavy ion beam fusion”, Nucl. Fusion 32, 1515 (1992).
  • [5] Pfalzner S., “An Introduction to Inertial Confinement Fusion”, Taylor & Francis, CRC Press, New York (2006).
  • [6] Moses E. I., “Ignition on the National Ignition Facility: A Path towards Inertial Fusion Energy”, Nuclear Fusion, 49, 104022 (2009).
  • [7] Lafon M., Betti R., Anderson K. S., Collins T. J. B., Epstein R., McKenty P. W., Myatt J. F., Shvydky A. and Skupsky S., “Direct-drive–ignition designs with mid-Z ablators”, Physics of Plasmas, 22, 032703 (2015).
  • [8] Gibbon P. and Förster E., “Short-pulse laser–plasma interactions”, Plasma Physics and Controlled Fusion, 38, 769 (1996).
  • [9] Atzeni S. and Meyer-ter-Vehn J., “The Physics of Inertial Fusion: Beam Plasma Interaction, Hydrodynamics, Hot Dense Matter”, International Series of Monographs on Physics, Clarendon, Oxford (2004).
  • [10] Rudraiah N., “Effect of Porous Lining on Reducing the Growth Rate of Raleigh-Taylor Instability in the Inertial Fusion Energy Target”, Fusion Science and Technology, 43, 307 (2003).
  • [11] Banerjee R., Mandal L., Roy S., Khan M. and Gupta M. R., “Combined effect of viscosity and vorticity on single mode Rayleigh-Taylor instability bubble growth”, Physics of Plasmas, 18, 022109 (2011).
  • [12] Babchin A. J., Frenkel A. L., Levich B. G. and Shivashinsky G. I., “Nonlinear saturation of Rayleigh-Taylor instability in thin films”, Physics of Fluids, 26, 3159 (1983).
  • [13] Takabe H., Mima K., Montierth L. and Morse R. L., “Self consistent growth rate of the Rayleigh-Taylor instability in an ablatively accelerating plasma”, Physics of Fluids, 28, 3676 (1985).
  • [14] Atzeni S., Schiavi A., Antonelli L. and Serpi A., “Hydrodynamic studies of high gain shock ignition targets: effect of low- to intermediate-mode asymmetries”, European Physical Journal D, 73: 243 (2019).
  • [15] Betti R. and Hurricane O. A., “Inertial-confinement fusion with lasers”, Nature Physics, 12, 435 (2016).
  • [16] Craxton R. S., Anderson K. S., Boehly T. R., Goncharov V. N., Harding D. R., Knauer J. P., McCrory R. L., McKenty P. W., Meyerhofer D. D., Myatt J. F., Schmitt A. J., Sethian J. D., Short R. W., Skupsky S., Theobald W., Kruer W. L., Tanaka K., Betti R., Collins T. J. B., Delettrez J. A., Hu S. X., Marozas J. A., Maximov A. V., Michel D. T.,Radha P. B., Regan S. P., Sangster T. C., Seka W., Solodov A. A., Soures J. M., Stoeckl C. and Zuegel J. D., “Direct-drive inertial confinement fusion: A review”, Physics of Plasmas, 22(11): 110501 1-153 (2015).
  • [17] Goyeau B., Lhuillier D., Gobin D. and Velarde M. G., “Momentum transport at a fluid-porous interface”, International Journal of Heat and Mass Transfer, 46, 4071 (2003).
  • [18] Rahimi Shamami S., Ghasemizad A., “Reduction of growth rate of Rayleigh-Taylor instability using nano-structured porous lining at ICF target shell”, The European Physical Journal Plus, 128: 141 (2013).
  • [19] Schmitt A. J., Bates J. W., Obenschain S. P., Zalesak S. T. and Fyfe D. E., “Shock ignition target design for inertial fusion energy”, Physics of Plasmas, 17, 042701 (2010).
  • [20] Rudraiah N., Krishnamurthy B. S., Jalaja A. S. and Desai T., “Effect of a magnetic field on the growth rate of the Rayleigh–Taylor instability of a laser-accelerated thin ablative surface”, Laser and Particle Beams, 22, 29 (2004).