Nano Mineralojik Akışkanların Termofiziksel Özelliklerinin Deneysel Olarak İncelenmesi

Bu çalışmada bentonit, diatomit, sepiyolit ve klinoptilolit malzemeleri içeren nanoakışkanların termofiziksel özellikleri belirlenmiştir. Spex tipi yüksek enerjili öğütücü kullanılarak 50 nm boyutunda nano parçacıklar üretilmiştir. Bu nano parçacıklar kullanılarak kütlece % 2 mineralojik malzeme ve kütlece % 0,5 Sodyum Dodesil Benzen Sülfonat içeren nanoakışkanlar 5 saat ultrasonik karıştırma sonucunda hazırlanmıştır. Termofiziksel özelliklerden olan ısıl iletkenlik, özgül ısı ve viskozite ölçümleri deneysel olarak gerçekleştirilmiştir. Mineral nanoakışkanlar içerisinde en büyük ısıl iletkenlik ve özgül ısı artışının bentonit içeren nanoakışkan ile elde edilmiştir. Bentonit içeren naoakışkanın askıda bulunan nano parçacık miktarının daha fazla olması nedeniyle diğer mineralojik nanaoakışkanlara göre ısıl iletkenlik ve özgül ısı diğerlerinin daha yüksek olduğu sonucuna varılmıştıır. Nanoakışkanlar içerisinde bulunan nano parçacıkların oluşturduğu parçacık-parçacık etkileşimi nedeniyle akışa karşı oluşan direncin arttığı, sonuç olarak saf suya kıyasla viskozitenin arttığı gözlemlenmiştir. 

Experimental Investigation of Thermophysical Properties of Nano Mineralogical Fluids

In this study, the thermophysical properties of nanoparticles containing bentonite, diatomite, sepiolite and clinoptilolite materials were determined. Nano particles with a size of 50 nm were produced using a Spex type high-energy mill. Using these nanoparticles, nanoparticles containing 2% mineralogical material and 0.5% Sodium Dodecyl Benzene Sulfonate by mass were prepared by ultrasonic mixing for 5 hours. The thermal conductivity, specific heat and viscosity measurements from thermophysical properties have been experimentally measured. The greatest thermal conductivity and specific heat increase in the mineral nano-powders were obtained with the bentonite-containing nanofluid. It is concluded that the nano flux containing bentonite has higher thermal conductivity and specific heat than the other mineralogical nano-fluids because the amount of suspended nano particles is higher. It has been observed that the resistance to flow increases due to the particle-particle interaction generated by the nanoparticles in the nanofluids, resulting in an increase in viscosity compared to pure water.

___

  • [1] Choi S. U. S. and Eastman J. A., “Enhancing thermal conductivity of fluids with nanoparticles”, ASME Internatiomal Mechanical Enginer Congress Exposition, 99-105, (1995).
  • [2] Keblinski P., Eastman J.A. and Cahill D.G., “Nanofluids for thermal transport”, Materials Today, 8(6): 36-44. (2005),
  • [3] Xie H., Wang J., Xi T., Liu Y. and Ai F., “Dependence of the thermal conductivity of nanoparticle-fluid mixture on the base fluid”, Journal of Materials Science Letters, 21 (9), 1469-1471 (2002).
  • [4] Eastman J.A., Choi S.U.S., Li S. and Tohmpson L.J., “Thompson LJ. Anomalously increased effective thermal conductivities of ethyleneglycol-based nanofluids containing copper nanoparticles”, Applied Physics Letters, 78 (6): 718-720, (2001).
  • [5] Xie H., Wang J., Xi T. and Liu Y., “Thermal conductivity of suspensions containing nanosized SiC particles”, International Journal of Thermophysics, 23(2): 571-580, (2002).
  • [6] Chon, C.H., Kihm K.D., Lee S.P. and Choi S.U.S., “Empirical correlation finding the role of temperature and particle size for nanofluid (Al2O3) thermal conductivity enhancement”, Applied Physics Letters, 87 (15): 153107 (1-3), (2005).
  • [7] Duangthongsuk W. and Wongwises S., “Measurement of temperature-dependent thermal conductivity and viscosity of TiO2-water nanofluids”, Experimental Thermal and Fluid Science, 33 (4): 706-714, (2009).
  • [8] Das S.K., Putra N., Thiesen P. and Roetzel W., “Temperature dependence of thermal conductivity enhancement for nanofluids”, Journal of Heat Transfer, 125 (4): 567-574, (2003).
  • [9] Chen W., Zou C., Li X. and Li L., “Experimental investigation of SiC nanofluids for solar distillation system: Stability, optical properties and thermal conductivity with saline waterbased fluid”, International Journal of Heat and Mass Transfer, 107, 264-270, (2017).
  • [10] Agarwal R., Verma K., Agrawal N.K. and Singh R., “Sensitivity of thermal conductivity for Al2O3 nanofluids” Experimental Thermal and Fluid Science, 80 19-26, (2017).
  • [11] Adriana M.A., “Hybrid nanofluids based on Al2O3, TiO2 and SiO2 Numerical evaluation of different approaches”, International Journal of Heat and Mass Transfer 104, 852-860, (2017).
  • [12] Sundar L.S., Singh M.K., Ferro M.C. and Sousaa A.C.M. “Experimental investigation of the thermal transport properties of graphene oxide/Co3O4 hybrid nanofluids” Inernational Communiccations in Heat and Mass Transfer, 84, 1-10, (2017).
  • [13] Das P.K., Mallik A.K., Ganguly and Santra A.K., “Stability and thermophysical measurements of TiO2 (anatase) nanofluids with different surfactants”, Journal of Moleculer Liquids, 254, 98-107, (2018).
  • [14] Azizi M., Honarvar B., “Investigation of thermophysical properties of nanofluids containing poly(vinyl alcohol)-functionalized graphene”, Journal of Thermal Analysis and Calorimetry, in press. https://doi.org/10.1007/s10973-018-7210-2
  • [15] Wang X., Zhu D. and Yang S., “Investigation of pH and SDBS on enhancement of thermal conductivity in nanofluids”, Chemical Physics Letters, 470 (1-3): 107-111, (2009).
  • [16] Suganthi K.S. and Rajan K.S, “Temperature induced changes in ZnO – water nanofluid: zeta potential, size distribution and viscosity profiles”, International Journal of Heat and Mass Transfer, 55(25-26), 796:-7980, (2012).
  • [17] Turgut A., Tavman I., Chirtoc M., Schuchmann H.P., Sauter C. and Tavman S., “Thermal conductivity and viscosity measurements of water-based TiO2 nanofluids”, International Journal of Thermophysics, 30(4): 1213-1226, (2009).
  • [18] Murshed S. M. S. Santos F. J. V., Nieto de Castro1 C. A., Patil V. S. and Patil K. R., “Morphology and thermophysical properties of non-aqueous titania nanofluids”, Heat and Mass Transfer, in press. https://doi.org/10.1007/s0023.
  • [19] Saeedinia M., Akhavan-Behabadi M.A. and Razi P., “Thermal and rheological characteristics of CuO–Base oil nanofluid flow inside a circular tube”, International Communications in Heat and Mass Transfer, 39(1): 152-159, (2012).
  • [20] Chandrasekar M., Suresh S. and Bose A.C., “Experimental investigations and theoretical determination of thermal conductivity and viscosity of Al2O3/water nanofluid”, Experimental Thermal and Fluid Science, 34 (2): 210-216 (2010).
  • [21] Turgut A., Sağlanmak Ş. ve Doğanay S., “Nanoakışkanların Isıl İletkenlik ve Viskozitesinin Deneysel İncelenmesi: Tanecik Boyutu Etkisi” Journal of the Faculty of Engineering and Architecture of Gazi University, 31, 93-103, (2016).
  • [22] Ghasemi S. and Karimipour A., “Experimental investigation of the effects of temperature and mass fraction on the dynamic viscosity of CuO-paraffin nanofluid”, Applied Thermal Engineering, 128, 189-197, (2018).
  • [23] Wang B.X., Zhou L.P. and Peng X.F., “Surface and size effects on the specific heat capacity of nanoparticles”, International Journal of Thermophysics, 27(1): 139-151 (2006).
  • [24] Tiznobaik H. and Shin D., “Enhanced specific heat capacity of high-temperature molten salt-based nanofluids”, International Journal of Heat and Mass Transfer, 57(2): 542-548, (2013).
  • [25] Liu Y. and Yang Y., “Investigation of specific heat and latent heat enhancement in hydrate salt based TiO2 nanofluid phase change material”, Applied Thermal Engineering, 124: 533-538, (2017).
  • [26] Variyenli H. İ. ve Arslan C., “Sıvıların ve gazların ısıl iletkenlik katsayısını belirleyebilmek için laboratuvar tipi bir deney cihazının tasarımı, imalatı ve test edilmesi”, Politeknik Dergisi, 20 (3): 599-605, (2017).
Politeknik Dergisi-Cover
  • ISSN: 1302-0900
  • Yayın Aralığı: Yılda 4 Sayı
  • Başlangıç: 1998
  • Yayıncı: GAZİ ÜNİVERSİTESİ