DMLS Eklemeli İmalatta Süreç Ve Maliyet Modeli Geliştirilmesi

Bu çalışmada son yıllarda gelişim göstererek endüstrinin temel imalat metotlarından biri haline gelen eklemeli imalat üzerine, imalat süresi, süreçleri ve maliyetler ekseninde çeşitli analizler gerçekleştirilmiştir. Toz yatak birleştirme teknolojilerinden bir tanesi olan “Doğrudan metal lazer sinterleme” (DMLS) metodunun işlem süreleri ve süreç analizinin yapılması sonucunda literatürde yer alan mevcut denklemler ve ilave olarak imalatın tüm adımlarını ve her türlü gideri hesaplamaya dâhil ederek genel bir maliyet ve süreç hesaplaması denklemi türetilmiştir. Elde edilen denklem Türkiye örneklemi üzerinden kontrol edilmiş ve Türkiye şartlarına yönelik bir çalışma yapılmıştır. Geliştirilen model ile imal edilmesi planlanan parçaların DMLS ile eklemeli imalat süreleri, imalat verimliliği ve etkin tezgâh kullanımı hakkındaki verilere ulaşabilmek mümkün hale gelmiştir. Bunların yanında imalat tezgâhların amortisman hesapları ve başa baş noktası analizleri farklı işletme şartlarında incelenerek gerçekleştirilmiştir. 

DMLS Additive Manufacturing Process and Cost Model Development

In this study, various analyzes have been carried out in terms of manufacturing time, processes and costs on the additive manufacturing, which has become one of the basic manufacturing methods of the industry. As a result of the processing times and process analysis of the "direct metal laser sintering" (DMLS) method, one of the powder bed fusion technologies, a general cost and process calculation equation has been derived, including the existing equations in the literature, plus all steps of manufacturing and all sorts of calculations . The resulting equation was checked on the sampling Turkey and a study was carried out for the conditions of Turkey. With the developed model, it is made possible to reach the data about the manufacturing time, manufacturing efficiency and effective use of the machine with DMLS parts planned to be manufactured. In addition, amortization calculations and head-to-head analyzes of manufacturing machines were carried out under different operating conditions.

___

  • DebRoy, T., Wei, H.L., Zuback, J.S., Mukherjee, T., Elmer, J.W., Milewski, J.O., Beese, A.M., Wilson-Heid, A., De, A., Zhang, W., “Additive manufacturing of metallic components – Process, structure and properties”, Progress in Materials Science journal, 92, 112–224, (2018).
  • Gu, D. D., Meiners, W., Wissenbach, K., Poprawe, R., “Laser additive manufacturing of metallic components: materials, processes and mechanisms”, International Materials Reviews, 57, 133–164, (2012).
  • Herzog, D., Seyda, V., Wycisk, E., Emmelmann, C., “Additive manufacturing of metals”, Acta Materialia, 117, 371–392, (2016).
  • Wong, K. V., Hernandez, A., “A Review of Additive Manufacturing”, International Scholarly Research Network ISRN Mechanical Engineering, Volume 2012, 1–10, (2012).
  • Everton, S. K., Hirsch, M., Stravroulakis, P., Leach, R. K., Clare, A. T., “Review of in-situ process monitoring and in-situ metrology for metal additive manufacturing”, Materials and Design, 95 (2016) 431–445, (2016).
  • Frazier, W. E., “Metal additive manufacturing: A review”, Journal of Materials Engineering and Performance, 23, 1917–1928, (2014).
  • Kayacan M. Y., Sayer, S., Ürün geliştirme sürecinde hızlı prototip uygulamaları. Plastik Dergisi, 125, 122–130, (2014).
  • ASTM International F2792-12a, “Standard Terminology for Additive Manufacturing Technologies”, (2013).
  • Manfredi, D., Calignano, F., Ambrosio, E. P., Krishnan, M., Canali, R., Biamino, S., Pavese, M., Atzeni, E., Luliano, L., Fino, P. Badini, C., “Direct Metal Laser Sintering: An additive manufacturing technology ready to produce lightweight structural parts for robotic applications”, Metallurgia Italiana,105, 15–24, (2013).
  • Baumers, M., Tuck, C., Wildman, R., Ashcroft, I., Rosamond, E., Hague, R., “Combined Build–Time, Energy Consumption and Cost Estimation for Direct Metal Laser Sintering”, Proceedings of Twenty Third Annual International Solid Freeform Fabrication Symposium—An Additive Manufacturing Conference, 53, 1689–1699, (2012).
  • Barclift, M., Joshi, S., Simpson, T. , Dickman, C., “Cost Modeling and Depreciation for Reused Powder Feedstocks in Powder Bed Fusion Additive Manufacturing”, Solid Freeform Fabrication Symposium – An Additive Manufacturing Conference, 2007–2028, (2016).
  • Baumers, M., Dickens, P., Tuck, C., Hague, R., “The cost of additive manufacturing: machine productivity, economies of scale and technology-push”, Technological Forecasting & Social Change, 102, 193–20, (2016).
  • Amini, M., “Time Estimation Additive Manufacturing”, Master of science in technology, Texas State University, (2014).
  • Thomas, D., Gilbert, S., “Costs and Cost Effectiveness of Additive Manufacturing - A Literature Review and Discussion”, NIST Special Publication, 1176, 1–77, (2014).
  • Piili, H., Happonen, A., Väistö, T., Venkataramanan, V., Partanen, J., “Cost Estimation of Laser Additive Manufacturing of Stainless Steel”, Physics Procedia, 78, 388–396, (2015).
  • Sahu, A. K., Narang, H. K., Sahu, A. K., Sahu, N. K., “Machine economic life estimation based on depreciation-replacement model”, Cogent Engineering, 3, 1–15, (2016).