Çay Atıklarından Türetilen Yüksek Performans Karbonun Transistörde İletim Kanal Materyali Olarak Uygulanması

Diyotlar, transistörler ve benzeri aygıtlar gibi ileri teknoloji alanlarında karbon malzemeler çalışılmaktadır. Gözenekli karbon materyallerin elektronik aygıtlarda kullanımı ve enerji depolama alanlarında uygulamaları da daha ekonomik yöntemler geliştirilmesi ve boyutların küçültülmesi bakımından önemlidir. Son yıllarda literatürde çok sayıda karbon kanallı transistör rapor edilmiş olsa da, gözenekli karbon olarak biyokütleden elde edilen karbonun transistör uygulamaları sınırlı sayıdadır. Karbon malzemelerin çoğu, giderek tükenmekte olan fosil kaynaklardır. Bu sebeple yenilenebilir karbon kaynakları önem kazanmaya başlamaktadır. Biyokütle tek yenilenebilir karbon kaynağıdır. Piroliz yöntemi ile biyokömür olarak adlandırılan karbonize materyale dönüştürülebilir. Ancak biyokömürün karbon tabanlı elektriksel aygıtlara uygulanabilmesi için yapısının geliştirilmesi gerekmektedir. Bu çalışmada, endüstriyel çay atıklarından elde edilen biyokömür, kimyasal ve fiziksel yöntemlerle yüksek performans ve n-katkılı karbon materyale dönüştürülmüştür. Yeni türetilen karbon materyal SEM, XRD, ve FT-IR yöntemleriyle karakterize edilmiştir. Oluşturulan bu karbon transistörde iletim kanal malzemesi olarak kullanılmıştır. Geliştirilen alan etkili karbon transistörün akım-gerilim (I-V) karakteristikleri belirlenmiştir. Daha hızlı ve verimli elektriksel aygıtlar, yenilenebilir, sürdürülebilir ve yerel biyokütle kaynakları kullanılarak geliştirilebilir.

Application of High Performance Carbon Derived from Tea Waste into Transistor as a Conduction Channel Material

Carbon materials are studied in high-tech electronics such as diodes, transistors similar devices. The use of porous carbon materials in electronic devices and their application in energy storage areas are important in terms of developing more economical methods and reducing the dimensions. Although a large number of carbon channel transistors have been reported in the literature in recent years, transistor applications of carbon from biomass as porous carbon are limited. Most of the carbon materials are originated from fossil sources that are diminishing. Renewable carbon resources are gaining importance. Biomass is the only renewable carbon resource. It can be converted to carbonized material called biochar by pyrolysis. However, in order to apply the biochar to carbon-based electrical devices, its structure needs to be improved. In this study, biochar obtained from industrial tea wastes was converted to high performance and n-dopped carbon material by chemical and physical methods. The newly derived carbon material was characterized by SEM, XRD, and FT-IR methods. This formed carbon transistor was used as conduction channel material. The current-voltage (I-V) characteristics of the developed field effect carbon transistor were determined. Faster and more efficient electrical devices can be developed using renewable, sustainable and local biomass resources.

___

  • [1] Bıçakçı S.N., “Nesnelerin interneti”, Takvim-i Vekayi, 7(1): 24-36, (2019)
  • [2] Avouris P., Chen Z., Perebeinos V., “Carbon-based electronics”, Nature Nanotechnology, 2: 605-615, (2007)
  • [3] Burghard M., Klauk H., Kern K., “Carbon-based field-effect transistors for nanoelectronics”, Advanced Materials, 21: 2586–2600, (2009)
  • [4] Schwierz F., “Graphene transistors”, Nature Nanotechnology, 5: 487-496, (2010)
  • [5] Aikawa S. et al., “Carrier polarity engineering in carbon nanotube field-effect transistors by induced charges in polymer insulator”, Applied Physics Letters, 112: 013501-1-013501-5, (2018)
  • [6] Bargaouia Y., Troudia M., Bondavallib P., Sghaiera N., “Gate bias stress effect in single-walled carbon nanotubes field-effecttransistors”, Diamond & Related Materials, 8: 62–65, (2018)
  • [7] Hamam A.M.M. et al., “Sub-10 nm graphene nano-ribbon tunnel field-effect transistor”, Carbon, 126: 588-593, (2018)
  • [8] Jangid P., Pathan D., Kottantharayil A., “Graphene nanoribbon transistors with high ION/IOFF ratio and mobility”, Carbon, 132: 65-70, (2018)
  • [9] Rabieefar F., Dideban D., Utilizing graphene nano-ribbon transistor in data converters: A comparative study”, ECS Journal of Solid State Science and Technology, 8(3): M30-M37, (2019)
  • [10] Feng X. et al., “All carbon materials pn diode”, Nature Communications, 9:3750-1-3750-7, (2018)
  • [11] Li X. et al., “Boron Doping of Graphene for Graphene–Silicon p–n Junction Solar Cells”, Advanced Energy Materials, 2: 425–429, (2012)
  • [12] Rahimi R., Ochoa M., Ziaie B., “Direct laser writing of porous-carbon/silver nanocomposite for flexible electronics”, ACS Applied Materials and Interfaces, 8(26): 16907–13, (2016)
  • [13] Li, S. et al., “Development of electrically conductive nano bamboo charcoal/ultra-high molecular weight polyethylene composites with a segregated network”, Composites Science and Technology, 132: 31–37, (2016)
  • [14] Barbera, K. et al., “Low ‐ temperature graphitization of amorphous carbon nanospheres”, Chinese Journal of Catalysis, 35(6): 869–76, (2014)
  • [15] Maiti, S. et al., “Silicon-doped carbon semiconductor from rice husk char”, Materials Chemistry and Physics, 109(1): 169–73, (2008)
  • [16] Roy, S., “Synthesis of graphene oxide using tea-waste biochar as green substitute of graphite and ıts application in de-fluoridation of contaminated water”, American Journal of Chemical Research, 1(1), 1-19, (2017)