Çarpık ve parçalı mıknatıs geometrileri kullanarak vuruntu torku minimizasyonu

Çalışmada, 2,5 kW gücünde 14 kutuplu, 84 oluklu sabit mıknatıslı senkron generatörün (SMSG) analitik tasarımı, analizi ve optimizasyonu gerçekleştirilmiştir. Bu tasarıma ait verim, tork, vuruntu torku ve manyetik akı yoğunluğu gibi performans özelikleri değerlendirilmiştir. Ardından mıknatıs geometrisinin vuruntu torkuna etkisini incelemek amacıyla ilgili generatörün 3 boyutlu modeli çıkartılmıştır. Bu bağlamda bölünmüş ve kaykı/çarpıklık (skew) verilmiş mıknatıs yapılarının etkileri araştırılmıştır.İlk tasarımda mıknatıs tek parça modellenmiş ve vuruntu torkunun etkin değeri 436,75 mNm olarak bulunmuştur. İkinci tasarımdamıknatıs yüzeyi boyunca belli ölçüde çarpık bir yarık açılmış ve bu işlem vuruntu torkunu 434,58 mNm değerine düşürmüştür. Diğer tasarımda, birinci tasarımdaki mıknatıs iki parçaya bölünmüş ve bölünen mıknatıslar çarpık şekilde tekrar birleştirilmişlerdir. Böylece vuruntu torkunun değeri 159,60 mNm olarak bulunmuştur. Son olarak, son modeldeki mıknatıs geometrisine belli ölçülerde iki tane yarık açılarak vuruntu torku 89,95 mNm’e kadar düşürülmüştür. Elde edilen sonuçlardan, son tasarımın, ilk tasarıma kıyasla vuruntu torku değerinde %80'e varan bir iyileşme sağladığı sonucuna varılmıştır.

Cogging torque minimization using skewed and separated magnet geometries

In the study, analytical design, analysis and optimization of a 2.5 kW 14-pole, 84-slot permanent magnet synchronous generator(PMSG) have been performed. The performance characteristics of this PMSG such as efficiency, torque, cogging torque andmagnetic flux density are assessed. Then, 3D model of the respective generator is acquired to examine the effect of magnetgeometry on the cogging torque produced. In that context, the effects of splitted and skewed magnet structures are examined. Inthe first design, the magnet is modelled with one piece and the rms value of the cogging torque is found as 436.75 mNm. In thesecond case, a certain skewed slit is made alongside the magnet and that yields a slightly reduced cogging torque of 434.58 mNm.In the other design, the magnet of the first design is divided into two sub-parts, which are then combined together in a skewedfashion. Thus, the value of cogging torque is found as 159.60 mNm. Eventually, by making two certain slits on the last model,cogging torque is further depressed down to 89.95mNm. It is concluded from the obtained results that the last design contributesan improvement in the value of cogging torque up to 80% compared to the initial design.

___

  • [1] Dalcalı A. and Akbaba M., “Optimum pole arc offset in permanent magnet synchronous generators for obtaining lowest voltage harmonics”, Scientia Iranica. Transaction D: Computer Science &Amp; Engineering and Electrical Engineering, 24: 3223-3230, (2017).
  • [2] Naciri M., Aggour M. and Ahmed W.A., “Wind energy storage by pumped hydro station”, Journal of Energy Systems, 1: 32-42, (2017).
  • [3] Uğurlu A., “An overview of Turkey's renewable energy trend”, Journal of Energy Systems, 1: 148-158, (2017).
  • [4] International Energy Agency, “World Energy Outlook 2014”, Paris, France, (2014).
  • [5] General Director of Renewable Energy, “2017 Unit Activity Report”, Ankara, Turkey, (2018).
  • [6] Çakır M.T., “Wind Energy potential of turkey and its place in EU countries”, Journal of Polytechnic, 13: 287- 293, (2010).
  • [7] Altın N. and Eyimaya S.E., “A combined energy management algorithm for wind turbine/ battery hybrid system”, Journal of Electronic Materials, 47: 4430- 4436, (2018)
  • [8] Sharma M., “Wind energy driven passive solar tracking system”, Int. J. of Renewable Energy Technology, 7: 240-245, (2016).
  • [9] Yoo J.H., Park C.S. and Jung T.U., “Permanent magnet structure optimization for cogging torque reduction of outer rotor type radial flux permanent magnet generator”, IEEE International Electric Machines and Drives Conference, Miami, FL, USA, (2017).
  • [10] Öztürk N., Dalcalı A., Çelik E. and Sakar S., “Cogging torque reduction by optimal design of PM synchronous generator for wind turbines”, International Journal of Hydrogen Energy, 42: 17593-17600, (2017).
  • [11] Dai J.C., Hu Y.P., Liu D.S. and Wei J., “Modelling and analysis of direct-driven permanent magnet synchronous generator wind turbine based on wind-rotor neural network model”, Proceedings of the Institution of Mechanical Engineers, Part A: Journal of Power and Energy, 226: 62-72, (2011).
  • [12] Lyan O., Jankunas V., Guseınoviene E., Pasilis A., Senulis A., Knolis A. and Kurt E., “Exploration of a permanent magnet synchronous generator with compensated reactance windings in parallel rod configuration”, Journal of Electronic Materials, 47: 1-7, (2018).
  • [13] Duan J., Fan S., Wu F., Sun L. and Wang G., “Instantaneous power control of a high speed permanent magnet synchronous generator based on a sliding mode observer and a phase locked loop”, International Journal of Electronics, 105: 923-940, (2017).
  • [14] Zhu X., Hua W., Wu Z., Huang W., Zhang H. and Cheng M., “Analytical approach for cogging torque reduction in flux-switching permanent magnet machines based on magnetomotive force-permeance model”, IEEE Transactions on Industrial Electronics, 65: 1965-1979, (2018).
  • [15] Ping J., Shuhua F. and Ho. S.L., “Distribution characteristic and combined optimization of maximum cogging torque of surface-mounted permanent-magnet machines”, IEEE Transactions on Magnetics, 54(3), (2018).
  • [16] Chu, W.Q. and Zhu Z.Q., “Investigation of torque ripples in permanent magnet synchronous machines with skewing”, IEEE Transaction on Magnetics, 49: 1211- 1220, (2013).
  • [17] Goryca Z., Paduszynski K and Pakosz A., “Model of the multipolar engine with decreased cogging torque by asymmetrical distribution of the magnets”, Open Physics, 16: 42-45, (2018).
  • [18] Jia H., Cheng M., Hua W., Yang Z. and Zhang Y., “Compensation of cogging torque for flux-switching permanent magnet motor based on current harmonics injection”, IEEE International Electric Machines and Drives Conference, Miami, FL, USA, 286-291, (2009).
  • [19] Hasanien H.M., “Torque ripple minimization of permanent magnet synchronous motor using digital observer controller”, Energy Conversion and Management, 51: 98–104, 2010.
  • [20] Güemes J.A., Iraolagoitia A.M., Del Hoyo J.I and Fernandez P., “Torque analysis in permanent-magnet synchronous motors: a comparative study”, IEEE Transaction on Energy Conversion, 26: 55- 63, (2011).
  • [21] Herlina, Setiabudy R. and Rahardjo A., “Cogging torque reduction by modifying stator teeth and permanent magnet shape on a surface mounted PMSG”, International Seminar on Intelligent Technology and Its Application, Indonesia, 227-232, (2017).
  • [22] Tseng W.T. and Chen W.S., “Design parameters optimization of a permanent magnet synchronous wind generator”. 19th International Conference on Electrical Machines and Systems, Japan, (2016).
  • [23] Liu G., Zeng Y., Zhao W. and Ji J., “Permanent magnet shape using analytical feedback function for torque improvement”, IEEE Transactions on Industrial Electronics, 65: 4619- 4630, (2018).
  • [24] Qiu H., Hu K., Yu W. and Yang C., “Influence of the magnetic pole shape on the cogging torque of permanent magnet synchronous motor”, Australian Journal of Electrical and Electronics Engineering, 14:64-70, (2017).
  • [25] Duan Y. “Method for design and optimization of surface mount permanent magnet machines and induction machines”, PhD diss., Georgia Institute of Technology, 2010.
  • [26] Zala B.O. and Pugachov V., “Methods to Reduce cogging torque of permanent magnet synchronous generator used in wind power Plants”, Elektronika Ir Elektrotechnika, 23: 43-48, (2017).
  • [27] Ou J., Liu Y., Qu R. and Doppelbauer M., “Experimental and theoretical research on cogging torque of PM synchronous motors considering manufacturing tolerances”, IEEE Transactions on Industrial Electronics, 65: 3772-3783, (2018).
  • [28] Dosiek L. and Pillay R., “Cogging torque reduction in permanent magnet machines”, IEEE Transactions on Industry Applications, 43: 1565-1570 (2007).
  • [29] Ho S.-L. and Fu W.N., “Review and future application of finite element methods in induction motors”, Electric Machines & Power Systems, 26: 111–125, (1998).
  • [30] Bouloukza I., Mordjaoui Mm, Kurt E., Bal G. and Ökmen Ç., “Electromagnetic design of a new radial flux permanent magnet motor”, Journal of Energy Systems, 2: 13-27, (2018).
  • [31] Faiz J., Ebrahimi B.M. and Sharifian M.B.B., “Finite Element transient analysis of an on-load three-phase squirrel-cage induction motor with static eccentricity”, Electromagnetics, 27: 207-227, (2007).
  • [32] Kurt E., Gör H. and Döner U., “Electromagnetic design of a new axial and radial flux generator with the rotor back-irons”, International Journal of Hydrogen Energy, 41: 7019-7026, (2016).
  • [33] Lin H., Wang D., Liu D. and Chen J., “Influence of magnet shape on torque behavior in surface-mounted permanent magnet motor”, 17th International Conference on Electrical Machines and Systems, China, (2014).
  • [34] Dalcalı A. and Akbaba, M., “Comparison of 2D and 3D magnetic field analysis of single-phase shaded pole induction motors”, Engineering Science and Technology, An International Journal, 19: 1-7, (2016).
Politeknik Dergisi-Cover
  • ISSN: 1302-0900
  • Yayın Aralığı: Yılda 4 Sayı
  • Başlangıç: 1998
  • Yayıncı: GAZİ ÜNİVERSİTESİ