PLA Esaslı Numunelerde Çekme Dayanımı İçin 3D Baskı İşlem Parametrelerinin Optimizasyonu

Bu çalışmada, ergiyik yığma modelleme (FDM) esaslı 3D yazıcı kullanılarak üretilen PLA+ numunelerin mekanik özelliklerine baskı hızı, doluluk oranı ve tarama açısının etkileri detaylı olarak araştırılmıştır. Bu amaçla, Taguchi L18 deney tasarımına göre 3D yazıcı ile standart çekme test numuneleri hazırlanmıştır. İşlem parametrelerinin (Baskı hızı, doluluk oranı ve tarama açısı) çekme dayanımı üzerindeki etkileri varyans analizi (ANOVA) ile belirlenmiştir. Ayrıca, Taguchi metodolojisi uygulanarak çekme dayanımı için işlem parametrelerinin optimizasyonu yapılmıştır. Sonuç olarak, çekme dayanımı üzerinde en etkin parametre doluluk oranı olurken, sırasıyla tarama açısı ve baskı hızı diğer önemli parametreler olarak tespit edilmiştir.  

Optimization of 3D Printing Operation Parameters for Tensile Strength in PLA Based Sample

In this study, the mechanical properties of PLA+ samples produced by using fused deposition method (FDM) based 3D printer were investigated in detail for the effects of printing speed, infill rate and raster angle. For this purpose, standard tensile test specimens were prepared with a 3D printer according to Taguchi L18 experimental design. The effects on the tensile strength of the process parameters (printing speed, infill rate and raster angle) were determined by analysis of variance (ANOVA). In addition, the process parameters for the tensile strength were optimized by applying the Taguchi methodology. Consequently, while the most effective parameter on the tensile strength was the infill rate, the raster angle and the printing speed were determined as other important parameters, respectively.

___

  • 1. Delikanlı K., Sofu M. M., Bekci U., “Üretim sektöründe hızlı direkt imalat sistemlerinin yeri ve önemi”, Makine Teknolojileri Elektronik Dergisi, 4: 33-39, (2005).
  • 2. Dizon J. R. C., Espera A. H., Chen Q., Advincula R. C., “Mechanical characterization of 3D-printed polymers”, Additive Manufacturing, 20: 44–67, (2018).
  • 3. Polzin C., Spath S., Seitz H., “Characterization and evaluation of a PMMA-based 3D printing process”, Rapid Prototyping Journal, 19(1): 37-43, (2013).
  • 4. Karagöz M., Cerit A. A., “Kişiye özel implant tasarımlarının 3 boyutlu yazıcılarla üretilmesi”, International Symposium On 3D Printing Technologies, 311-317, (2016).
  • 5. Topkaya T., “Dental implant destekli protezlerde implant sayısının ve yerleşim şeklinin sonlu elemanlar metoduyla analizi”, Yüksek Lisans Tezi, Fırat Üniversitesi Fen Bilimleri Enstitüsü, (2013).
  • 6. Lee J. Y., An J., Chua C. K., “Fundamentals and applications of 3D printing for novel materials”, Applied Materials Today, 7: 120–133, (2017).
  • 7. Turner B. N., Strong R., Gold S. A., “A review of melt extrusion additive manufacturing proces-ses: I. process design and modeling”, Rapid Prototyping Journal, 20(3): 192-204, (2014).
  • 8. Casavola C., Cazzato A., Moramarco V., Pappalettere C., “Orthotropic mechanical properties of fused deposition modelling parts described by classical laminate theory”, Materials and Design, 90: 453–458, (2016).
  • 9. Rankouhi B., Javadpour S., Delfanian F., Letcher T., “Failure analysis and mechanical characterization of 3D printed ABS respect to later thickness and orientation”, Journal of Failure Analysis and Prevention, 16: 467–481, (2016).
  • 10. Tymrak B. M., Kreiger M., Pearce J. M., “Mechanical properties of components fabricated with open-source 3D printers under realistic environmental conditions”, Materials and Design, 58: 242–246, (2014).
  • 11. Domingo M., Puigriol J. M., Garcia A. A., Lluma J., Borros S., Reyes G., “Mechanical property characterization and simulation of fused deposition modeling polycarbonate parts”, Materials and Design, 83: 670–677, (2015).
  • 12. Sood A. K., Ohdar R. K., Mahapatra S. S., “Parametric appraisal of mechanical property of fused deposition modelling processed parts”, Materials and Design, 31: 287–295, (2010).
  • 13. Vaezi M., Chua C. K., “Effects of layer thickness and binder saturation level parameters on 3D printing process”, International Journal of Advanced Manufacturing Technology, 53: 275–284, (2011).
  • 14. Mohamed O. A., Masood S. H., Bhowmik J. L., “Optimization of fused deposition modeling process parameters: a review of current research and future prospects”, Advances in Manufacturing, 3: 42–53, (2015).
  • 15. ESUN 3D. http://www.esun3d.net/products/142.html.
  • 16. Taguchi G., Chowdhury S., Wu Y., “Taguchi's Quality Engineering Handbook, John Wiley & Sons, Inc.”, New Jersey, USA, (2005).
  • 17. Chacon J. M., Caminero M. A., Garcia-Plaza E., Nunez P. J., “Additive manufacturing of PLA structures using fused deposition modelling: Effect of process parameters on mechanical properties and their optimal selection”, Materials and Design, 124: 143–157, (2017).
  • 18. Lee B. H., Abdullah J., Khan Z. A., “Optimization of rapid prototyping parameters for production of flexible ABS object”, Journal of Materials Processing Technology, 169: 54–61, (2005).
  • 19. Lee C. S., Kim S. G., Ahn S. H., “Measurement of anisotropic compressive strength of rapid prototyping parts”, Journal of Materials Processing Technology, 8: 248–257, (2002).
  • 20. Wu W., Geng P., Li G., Zhao D., Zhang H., Zhao J., “Influence of layer thickness and raster angle on the mechanical properties of 3D-printed PEEK and a comparative mechanical study between PEEK and ABS”, Materials, 8: 5834–5846, (2015).
  • 21. Ahn S. H., Montero M., Odell D., Roundy S., Wright P. K., “Anisotropic material properties of fused deposition modeling ABS”, Rapid Prototyping Journal, 8(4): 248–257, (2002).