Atomik Tabaka Biriktirme Metodu ile Üretilen HfO2 Tabanlı Sensörlerin Hidrojen Gaz Algılama Özelliklerinin İncelenmesi

Fosil yakıtların yakın gelecekte tükenecek olmaları ve çevreye CO2 gibi zararlı atıklar bırakmaları temiz, güvenilir ve geleceğin enerji kaynağı olan H2 gazının çok geniş ve değişik alanlarda kullanılmasının önünü açmıştır. Bu durum uygulama alanlarının hızla genişlemesine ve araştırmacıların H2 gaz sensörü üzerine yoğunlaşmasına neden olmuştur. Bu çalışmada p-Si yarıiletken üzerine Atomik Tabaka Biriktirme (ALD) yöntemi ile HfO2 ince film büyütülerek HfO2/p-Si yapı oluşturuldu. Üretilen numunenin farklı sıcaklıklarda (30°C-180°C) ve farklı gaz konsantrasyonlarında (1000ppm-4000ppm) zamana bağlı olarak hidrojen gazı için algılama özellikleri incelendi. Yapılan ölçümler sonucunda üretilen HfO2 /p-Si ince filmlerin düşük sıcaklık hidrojen gaz sensörü olarak kullanılabileceği görüldü.

Investigation of Hydrogen Gas Sensing Properties of HfO2 Based Sensor Produced By Atomic Layer Deposition Method

Fossil fuels can very quickly be exhausted condition and thus leave harmful residues such as CO2 environment clean and reliable use of the H2 gas as the energy source of the future are expanded in various fields. In this case, the new research on the rapidly expanding field of applications and H2 gas sensor causes the increase. In this study, HfO2 thin films are grown on the p-Si by Atomic Layer Deposition (ALD) method and HfO2 /p-Si thin film was produced. HfO2 /p-Si structure is grown by Atomic Layer Deposition method and hydrogen gas sensing properties were investigated. Produced sample at different temperatures (30 °C-180 °C) and at different gas concentrations (1000ppm-4000ppm) as a function of time is investigated with measuring the electrical properties. Measurement results show that HfO2 /p-Si thin films produced by ALD can be used as low temperatures hydrogen gas sensors.

___

  • [1] Çolak Z., ‘Anodik Oksidasyon Yöntemi İle Üretilen Titanyum Oksit Nanotüplerin Hidrojen Algılama Özelliklerinin İncelenmesi’, Yüksek Lisans Tezi, Gebze Yüksek Teknoloji Enstitüsü, Gebze, (2008)
  • [2] Erman C., ‘Hidrojenin Ek Yakıt Olarak Kullanılmasının Dizel Motora Etkilerinin İncelenmesi’, Yüksek Lisans Tezi, Hacettepe Üniversitesi, (2007)
  • [3] Solmaz R., ‘Hidrojen Gazı Eldesi ve Metanol Elektrooksidasyonu İçin Katalitik Elektrot Geliştirilmesi’, Doktora Tezi, Çukurova Üniversitesi, Adana, (2009)
  • [4] Choudhuri A.R., ‘Investigation on the Flame Extinction Limit of Fuel Blends’, Combustion and Propulsion Research Laboratory, the University of Texas at El Paso, USA, (2005)
  • [5] McCarty R.D., Hord J., Roder H.M., ‘Selected Properties of Hydrogen (Engineering Design Data)’ National Bureau of Standards Monograph 168, US Government Printing Office, Washington, (1981)
  • [6] Kuznetsov M., ‘Effect of Pressure and Temperature on Flame Acceleration and DDT Limits for Methane-Air Mixtures’, Proc. European Combustion Meeting (ECM2005), April 3-6, (2005)
  • [7] Lv Y., Zhang B., Wu Y., ‘Effect of Ni content on microstructural evolution and hydrogen storage properties of Mg1–xNi–3La (x = 5, 10, 15, 20 at.%) alloys’, J. Alloys Comp. 641: 176–180, ( 2015)
  • [8] Prezhdo V.V., Vashchenko E.V. , Prezhdo O.V. , Pushko A., ‘Structure and properties of hydrogen bonded complexes of pyridine-N-oxide and its derivatives’, J. Mol. Struc. 510: 69–83, (1999)
  • [9] Licznerski B.W., Nitsch K., Teterycz H., Wisniewski K., ‘The influence of Rh surface doping on anomalous properties of thick-film SnO2 gas sensors’, Sens. Actuators B 79: 157–162 , (2001)
  • [10] Al-Kuhaili M.F., Durrani S.M.A., BakhtiariI.A., ‘Carbon monoxide gas-sensing properties of CeO2–ZnO thin films’, Appl. Surf. Sci., 22(5): 3033–3039, (2008)
  • [11] Phanichphant S., ‘Semiconductor Metal Oxides as Hydrogen Gas Sensors’, Procedia Engineering 87: 795 – 802, (2014 )
  • [12] Adamyan A.Z., Adamyan Z.N., Aroutiounian V.M., Arakelyan A.H., Touryan K.J., Turner J.A., ‘’ Sol–gel derived thin-film semiconductor hydrogen gas sensor’, International Journal of Hydrogen Energy 32: 4101 – 4108, (2007)
  • [13] Steinebach H., Kannan S., Rieth L., Solzbacher F., ‘H2 gas sensor performance of NiO at high temperatures in gas mixtures’, Sens. Actuators B, 162–168,(2010)
  • [14] Karaduman I., Yıldız D.E., Sincar M.M., Acar S., ‘ UV light activated gas sensor for NO2 detection’, Mater. Sci. Semi. Processing, 28: 43-47, (2014)
  • [15] Blauw A. M., Van Anh T.D.,Calama M.C., Brongersma S.H., ‘Metal Oxide ALD Films for Low Power Sensor Applications’, ECS Trans. 50(13): 137-140, (2013)
  • [16] Karaduman I., Demir M., Yıldız D.E., Acar S., ‘CO2 gas detection properties of a TiO2 /Al2O3 heterostructure under UV light irradiation’, Physıca Scrıpta 90(5): 055802, (2015)
  • [17] Pinna N., Knez M., ‘Atomic Layer Deposition of Nanostructured Materials’, WILEY, 41-51 , (2012)
  • [18] Hwang C.S., Yoo C.Y., ‘Atomic Layer Deposition for Semiconductors’, Springer, 15-47, (2014)
  • [19] Kääriäinen T., Cameron D., Kääriäinen M.L, Sherman A., ‘Atomic Layer Deposition’, WILEY, (2013)
  • [20] Moon S.E., Lee H.K., Choi N.J., Kang H.T., Lee J., Ahn S.D., Kang S.Y., ‘Low power consumption micro C2H5OH gas sensor based on micro-heater and ink jetting technique’ , Sens. Actuators B, 217: 146–150, (2015)
  • [21] Demir M., Barin Ö., Karaduman I., Yıldız D.E., Acar S., ‘Low Concentration of CO Gas Sensor by Atomic Layer Deposition’, Journal of Physical Science and Application 4 (8): 488-492, (2014)
  • [22]Kukli K., Ritala M., Sajavaara T., Keinonen J., Leskela M., ‘Atomic Layer Depoisition of Hafnium Dioxide Films From Hafnium Tetrakis(ethylmethylamide) and water’, Chem. Vap. Deposition 8:5, 199-204, (2002)
  • [23]Martınez F.L., Toledano-Luque M., Carabe J., Bohne W., Rohrich J., Strub E., Martil I., ‘Optical properties and structure of HfO2 thin films grown by high pressure reactive sputtering’, J. Phys. D: Appl. Phys. 40: 5256– 5265, (2007)
  • [24] Gao J., He G., Zhang J.W., Deng B., Liu Y.M., ‘Annealing temperature modulated interfacial chemistry and electrical characteristics of sputtering-derived HfO2 /Si gate stack’, J. Alloys and Compounds 647: 322-330, (2015)
  • [25] Bennett N.S. , Cherkaoui K., Wong C.S., O'Connor É., Monaghan S., Hurley P., Chauhan L., McNally P.J., ‘Structural and optical properties of post-annealed atomic-layer-deposited HfO2 thin films on GaAs’, Thin Solid Films 569: 104–112, (2014)
  • [26] Choi G., Satyanarayana L., Park J., ‘Effect of process parameters on surface morphology and characterization of PE-ALD SnO2 thin films for gas sensing’, App. Surf. Science 252: 7878–7883, (2006)
  • [27] Wang C., Yin L., Zhang L., Xiang D., Gao R., ‘Metal Oxide Gas Sensors: Sensitivity and Influencing Factors’, Sensors 10: 2088-2106, (2010)
  • [28] Geistlinger H., ‘Accumulation layer model for Ga2O3 thin- film gas sensors based on the volkenstein theory of catalysis’ Sens. Actuators B 18-19: 125–31, (1994)
  • [29] Soleimanpour A. M., Khare S.V., Jayatissa A.H., ‘Enhancement of Hydrogen Gas Sensing of Nanocrystalline Nickel Oxide by Pulsed-Laser Irradiation’, ACS Appl. Mater. Interfaces 4: 4651−4657, (2012)
  • [30] Gu H., Wang Z., Hu Y., ‘ Hydrogen Gas Sensors Based on Semiconductor Oxide Nanostructures’, Sensors 12: 5517-5550, (2012)
  • [31] Lima Y.T., Sonb J.Y., Rhee J.-S ’Vertical ZnO nanorod array as an effective hydrogen gas sensor’ Ceramics International 39: 887–890, (2013)
  • [32] Babaei M., Alizadeh N., ‘‘Methanol selective gas sensor based on nano-structured conducting polypyrrole prepared by electrochemically on interdigital electrodes for biodiesel analysis’’, Sens. Actuators B 183: 617– 626, (2013)
  • [33] Patil D.R., Patil L.A., Amalnerkar D.P., ‘ Ethanol Gas Sensing Properties of Al2O3 - doped ZnO Thick Film Resistor’, Bull. Mater. Sci., 30:6, 553-559, (2007)
  • [34] Korotcenkova G., Cho B.K., ‘Instability of metal oxidebased conductometric gas sensors and approaches to stability improvement (short survey)’, Sens. Actuators B 156: 527–538, (2011)
  • [35] Durrani S.M.A., ‘CO-sensing properties of hafnium oxide thin films prepared by electron beam evaporation’ , Sens. Actuators B 120: 700–705, (2007)
  • [36] Villatoro J.,Luna-Moreno D., Monzon-Hernandez D., ‘Optical fiber hydrogen sensor for concentrations below the lower explosive limit’, Sens. Actuators B, 110: 23– 27, (2005)
  • [37] Lyson-Sypien B., ‘Nanopowders of chromium doped TiO2 for gas sensors’ Sens. Actuators B 175: 163–72, (2012)
  • [38] Capone S., Leo G., Rella R., Siciliano P., Vasanelli L., ‘Physical characterization of hafnium oxide thin films and their application as gas sensing devices’ J. Vac. Sci. Technol. A 16:6, (1998)
  • [39]Gupta R.B., ‘Hydrogen Fuel Production, Transport, and Storage’, CRC Press, 495-5, (2008)
Politeknik Dergisi-Cover
  • ISSN: 1302-0900
  • Yayın Aralığı: Yılda 4 Sayı
  • Başlangıç: 1998
  • Yayıncı: GAZİ ÜNİVERSİTESİ