TiO2 İçeren Nanoakışkan Kullanımının Isı Borusu Performansına Etkisinin Deneysel Olarak İncelenmesi

Bu çalışma ile nano boyutta TiO2 (Titanyum dioksit) parçacıkları içeren nanoakışkan kullanılarak çift fazlı kapalı bir termosifonun (ısı borusu) ısıl performansının iyileştirilmesi amaçlanmıştır. Çalışmada kullanılan ısı borusu 1 m uzunluğunda, iç ve dış çapı sırasıyla 13 mm ve 15 mm olan bakır bir borudur. Isı borusunun 400 mm’lik kısımları yoğuşma ve buharlaşma bölgelerini, geriye kalan 200 mm’lik kısmı ise adyabatik bölgeyi oluşturmaktadır. Yapılan deneysel çalışmada ısı borusunun toplam hacminin 1/3’lük kısmı iş akışkanı ile doldurulmuştur. Yoğuşma bölümünden çekilen ısıyı saptamak amacıyla 3 farklı soğutma suyu debisi (5 g/s, 7.5 g/s ve 10 g/s) ve buharlaşma bölgesi için 3 farklı ısıtıcı gücü (200 W, 300 W ve 400 W) kullanılarak deneyler tamamlanmıştır. Deneyler su ve nanoakışkan için ayrı ayrı yapılarak elde edilen sonuçlar karşılaştırılmıştır. En iyi sonuç, ısıl performansta %16.5 oranında iyileşme sağlayan, iş akışkanı olarak nanoakışkanın kullanıldığı 200 W ısıtıcı gücü ve 5 g/s soğutma suyu debisinde elde edilmiştir.

Experimental Investigation of Nano fluid Usage Including TiO2 on The Effect of Heat Pipe Performance

By this study, it is aimed to improve the thermal performance of the two phase closed thermosyphon (TPCT) using nano fluid that contains TiO2 particles. The heat pipe utilizing in this work had 1 m length. Its inner and outer diameters were 13 mm and 15 mm, respectively. While both the evaporator and the condenser sections had 400 mm length, the rest 200 mm length of the pipe consisted of adiabatic section. In experimental study performed, one third of the overall volume of the heat pipe was filled with working fluid. In order to determine the heat amount extracting from the condenser section, 3 different mass flow rates of cooling water (5 g/s, 7.5 g/s and 10 g/s) was used. The experiments, in addition, were completed for 3 varied heater power (200 W, 300 W and 400 W) for evaporating the working fluid. They were conducted separately not merely for the water, but also the nano fluid and the findings were compared to each other. The best result was acquired from the experiment in which working fluid was nano fluid with the cooling water mass flow rate of 5 g/s and 200 W heater power.

___

  • 1. Zhang L. Z., ‘Conjugate Heat and Mass Transfer in Heat Mass Exchanger Ducts’, 1:Elsevier, USA, (2014).
  • 2. Çiftçi E., Sözen A., Menlik T. ve Gürü M., ‘ Füzel Yağı Kullanılarak Isı Borusu Performansının İyileştirilmesi’, 3. Anadolu Enerji Sempozyumu(AES), Muğla, 205-212, (2015).
  • 3. Chen, Y.T., Wei, W.C., Kang, S.W. and Yu, C.S., ‘ Effect of Nanofluids on Flat Heat Pipe Thermal Performance’, 24th IEEE Semiconductor Thermal Measurement and Management Symposium (IEEE), Dallas, (2008).
  • 4. Tsai, C.Y., Chien, H.T. , Ding, P.P., Chan, B., Luh, T.Y. and Chen, ‘Effect of Structural Character of Gold Nanoparticles in Nanofluid on Heat Pipe Thermal Performance’, Mater. Lett., 58(9): 1461- 1465, (2004).
  • 5. Qu, J., Wu, H.Y. and Cheng, P., ‘Thermal Performance of an Oscillating Heat Pipe with Al2O3 Water Nanofluids’, International Communications in Heat and Mass Transfer, 37(2): 111-115, (2010).
  • 6. Huminic, G., Huminic, A., Morjan, I. and Dumitrache, F., ‘Experimental Study Of The Thermal Performance Of Thermosyphon Heat Pipe Using Iron Oxide Nanoparticles’, International Journal of Heat And Mass Transfer, 54(1):656-661, (2011).
  • 7. Chen, .Y-J., Wang, P.-Y., Liu, Z.-H. and Li, Y.-Y., “Heat transfer characteristics of a new type of copper wirebonded flat heat pipe using nanofluids”, International Journal of Heat and Mass Transfer, 67:548-559, (2013).
  • 8. Sarafraz, M. M., Hormozi, F. and Peyghambarzadeh, S. M., “Thermal performance and efficiency of a thermosyphon heat pipe working with a biologically ecofriendly nanofluid”, International Communications in Heat and Mass Transfer, 57:297-303, (2014).
  • 9. Tharayil, T., Asirvatham, L. G., Ravindran, V. and Wongwises, S. “Thermal performance of miniature loop heat pipe with graphene–water nano Fluid”, International Journal of Heat and Mass Transfer”, 93:657-968, (2015).
  • 10. Lin, J. Z., Xia, Y. and Ku, X. K., “Flow and heat transfer characteristics of nanofluids containing rod-like particles in a turbulent pipe flow” , International Journal of Heat and Mass Transfer, 93:57-66, (2015).
  • 11. Sadeghinezhad, E., Mehrali, M., Rosen, M. A., Akhiani, A. R., Latibari, S. T., Mehrali, M and Metselaar, H. S. C., “Experimental investigation of the effect of graphene nanofluids on heat pipe thermal performance”, Applied Thermal Engineering, 100:775-787, (2016).
  • 12. S. Khandekar, Y.M. Joshi and B. Mehta, ‘Thermal Performance of Closed Two-Phase Thermosyphon Using Nanofluids’, International Journal of Thermal Sciences, 47: 659–667, (2008).
  • 13. P. Naphon, P. Assadamongkol and T. Borirak, ‘Experimental Investigation of Titanium Nanofluids on The Heat Pipe Thermal Efficiency’, International Communications in Heat and Mass Transfer, 35: 1316– 1319, (2008).
  • 14. Naphon, D. Thongkum and P. Assadamongkol, ‘Heat Pipe Efficiency Enhancement With RefrigerantNanoparticles Mixtures’, Energy Conversion and Management, 50: 772–776, (2009).
  • 15. S.H. Noie, S.Z. Heris, M. Kahani and S.M. Nowee, ‘Heat Transfer Enhancement Using Al2O3/Water Nanofluid in a Two-Phase Closed Thermosyphon’, International Journal of Heat and Fluid Flow, 30: 700–705, (2009).
Politeknik Dergisi-Cover
  • ISSN: 1302-0900
  • Yayın Aralığı: Yılda 4 Sayı
  • Başlangıç: 1998
  • Yayıncı: GAZİ ÜNİVERSİTESİ