Mühendislik Bakış Açısıyla Cerrahi Robot Teknolojisinde Mevcut Durum Ve Beklentiler: Literatür Taraması

1980'li yıllardan başlayarak endüstriyel robotikte sağlanan gelişmelerin cerrahi alanına da yaygınlaştırma çalışmaları hızlı bir artış göstermiştir. Ticari hale gelmiş robot sayısı sınırlı olmakla birlikte günümüzde çok çeşitli amaçlara yönelik cerrahi robot geliştirme çalışmaları yürütülmektedir. Konunun cerrahi açıdan değerlendirmesi üzerinde hekimler tarafından çok sayıda çalışma yürütülmektedir. Cerrahi robotların mühendislik tarafında ise yapılması gereken daha bir çok çalışma bulunmaktadır. Bu çalışmada cerrahi robotlar üzerinde yürütülen mühendislik çalışmaları tarihsel süreç içinde ele alınmış, gelecek çalışmalara ışık tutulmaya gayret edilmiştir.

State of the Art and Expectations in the Surgical Robotics Technology from the Engineering Point of Wiev: A Literature Rewiev

Starting from 1980s, there is a rapid increase in the amount of studies for the extension of achievements in the industrial robotics to surgical field. Although a limited number of robots have become commercial to date, surgical robot development studies are carried out for various purposes. The assessment of the subject in surgical aspects is conducted by physicians. On the other hand, in the engineering side there are a lot more work to be done on the surgical robots. In this study, engineering studies conducted on surgical robots were discussed in the historical process and it is tried to shed a light on the future works.

___

  • 1. Taylor, R. H., Stoianovici, D., "Medical robotics in computer-integrated surgery," IEEE Transactions on Robotics and Automation, 19(5): 765-781 (2003).
  • 2. Barrett, A. R. W. et al “Preoperative planning and intraoperative guidance for accurate computer-assisted minimally invasive hip resurfacing surgery” Proc of the Institution of Mechanical Engineers, Part H: J Engineering in Medicine, 220 (7): 759-773 (2006).
  • 3. Bradberry, T. J., Gentili, R. J., Contreras-Vidal, J. L. “Fast attainment of computer cursor control with noninvasively acquired brain signals” J Neural Engineering, 8 (3): (2011).
  • 4. Shinohara, K. “Consideration of the human-computer interface in the operation room in the era of computer aided surgery” Communications in Computer and Information Science, 174 CCIS (PART 2), 72-75 (2011). 5. Staub, C. et al “Automation of tissue piercing using
  • circular needles and vision guidance for computer aided laparoscopic surgery” Proc - IEEE Int Conf on Robotics and Automation, 4585-4590 (2010).
  • 6. Taylor, R.H., Kazanzides, P. “Medical Robotics and Computer-Integrated Interventional Medicine” Advances in Computers, 73: 219-260 (2008).
  • 7. Xiaohui, X. et al “A robot arm for assisting liver surgery” Computer-Aided Design and Applications, 8 (5): 713-722 (2011).
  • 8. Gomes, P. “Surgical robotics: Reviewing the past, analysing the present, imagining the future” Robotics and Computer-Integrated Manufacturing, 27 (2): 261- 266 (2011).
  • 9. Kim, M.Y., Cho, H. “Technological Trend of Endoscopic Robots” J Institute of Control, Robotics and Systems, 20 (3), pp. 345-355 (2014).
  • 10. Low, S.C., Phee, L. “A review of master-slave robotic systems for surgery” 2004 IEEE Conf on Robotics, Automation and Mechatronics, 37-42 (2004).
  • 11. Camarillo, D.B. et al “Mechanics modeling of tendondriven continuum manipulators” IEEE Transactions on Robotics, 24 (6): 1262-1273 (2008).
  • 12. Ishii, C. et al “Double-screw-drive mechanism incorporated multi-DOF robotic forceps manipulator for minimally invasive surgery” Nihon Kikai Gakkai Ronbunshu, C Hen/Transactions of the Japan Society of Mechanical Engineers, Part C, 76 (771): 3042-3050 (2010).
  • 13. Ishii, C. et al “Robotic forceps manipulator with a novel bending mechanism” IEEE/ASME Transactions on Mechatronics, 15 (5), pp. 671-684 (2010).
  • 14. Ishii, C., Kamei, Y. “On servo experiment of a new multi-DOF robotic forceps manipulator for minimally invasive surgery” Proceeding of the 5th Int Symposium on Mechatronics and its Applications, ISMA 2008 (2008).
  • 15. Wei, W., Kai, X., Simaan, N. “A compact two-armed slave manipulator for minimally invasive surgery of the throat” Proc of the First IEEE/RAS-EMBS Int Conf on Biomedical Robotics and Biomechatronics, 2006, BioRob 2006, 2006, 769-774 (2006).
  • 16. Yang, T., et al “Mechanism of a learning robot manipulator for laparoscopic surgical training” Advances in Intelligent Systems and Computing, 194 AISC (VOL. 2), 17-26 (2013).
  • 17. Yonemura, T. et al “Comparison of pose correspondence methods of master-slave manipulators for neurosurgical robotic systems” Int J Automation Technology, 5 (5): 738-745 (2011).
  • 18. Meng, C.R. et al “A guiding robot for minimally invasive spinal surgery based on parallel manipulator” Advanced Materials Research, 902: 280-285 (2014).
  • 19. Takahashi, H. et al “Master manipulator with higher operability designed for micro neuro surgical system” Proc - IEEE Int Conf on Robotics and Automation, 3902-3907 (2008).
  • 20. www.eaes.eu/getmedia/a7701c3a-ad02-4a2b-a8db43b8880230b0/Final_ consensus - use-ofrobotics_Paris.pdf (Erişim Tarihi:01.05.2015).
  • 21. Jankovic, J., Fahn, S. "Physiologic and pathologic tremors. Diagnosis, mechanism, and management", Ann. Internal Med., 93: 460 - 465 (1980).
  • 22. Confer, R. G., Bainbridge, R. C. "Voice control in the microsurgical suite", Proc. Voice I/O Systems Applications Conf. ',84 (1984)
  • 23. Garbini, J. L., et al "Robotic instrumentation in total knee arthroplasty", Proc. 33rd Annu. Meeting, Orthopaedic Research Society, 413 (1987).
  • 24. Kwoh, Y. S. et al "A robot with improved absolute positioning accuracy for CT-guided stereotactic brain surgery", IEEE Trans. Biomed. Eng., 35: 153 - 161 (1988).
  • 25. Charles, S. , Williams, R. E., Hamel, B. "Design of a surgeon-machine interface for teleoperated microsurgery", Proc. Annu. Int. Conf. IEEE Engineering in Medicine and Biology Society, 11: 883 -884 (1989).
  • 26. Guerrouad, A., Vidal, P. "SMOS: Stereotaxical Microtelemanipulator for Ocular Surgery", Proc. Annu. Int. Conf. IEEE Engineering in Medicine and Biology Society, pp.11:879 -11 (1989).
  • 27. Taylor, R., et al "A robotic system for cementless total hip replacement surgery in dogs", Proc. 2nd Workshop Medical and Healthcare Robotics (1989).
  • 28. Ramacciotti, M. et al “A design paradigm for the development of advanced operating rooms” Proc of the IASTED Int Conf on Robotics Applications, RA 2014, 356-361 (2014).
  • 29. Van Den Berg, J. et al “Superhuman performance of surgical tasks by robots using iterative learning from human-guided demonstrations” Proc - IEEE Int Conf on Robotics and Automation, 2074-2081 (2010).
  • 30. http://www.scopus.com/authid/detail.url?origin=resultsli st&authorId=7405756438 &zone (erişim tarihi 15.03.2015).
  • 31. Guven, Y., Barkana, D.E. “Bone cutting trajectory generation using a medical user interface of an orthopedical surgical robotic system” 3rd Int Conf on Human System Interaction, HSI'2010 - Conf Proc, 325-330 (2010).
  • 32. Güven, Y., Barkana, D.E. “Medical user interface for orthopedical surgical robotic system [Ortopedik cerrahi robotik sistem için tibbi kullanici arayüzü]” 2010 15th National Biomedical Engineering Meeting, BIYOMUT2010 (2010).
  • 33. Karadogan, E., Williams II, R.L. “A cable-actuated robotic lumbar spine for palpatory training of medical students” Proc of the ASME Design Engineering Technical Conf, 2 (PARTS A AND B), 309-318 (2010).
  • 34. Turkseven, M., Ueda, J. “Design of an MRI compatible haptic interface” IEEE Int Conf on Intelligent Robots and Systems, 2139-2144 (2011).
  • 35. Güven, Y., Barkana, D.E. “Evaluation of an orthopedic surgical robotic system orthoroby on bone cadaver” Lecture Notes in Electrical Engineering, 103 LNEE, 41-52 (2011).
  • 36. Bebek, Ö., Çavuşoǧlu, M.C. “Towards the development of a robotic system for beating heart surgery” Surgical Robotics: Systems Applications and Visions, 525-556 (2011).
  • 37. Sengül, A., et al “Role of holographic displays and stereovision displays in patient safety and robotic surgery” Advances in Intelligent Systems and Computing, 194 AISC (VOL. 2), 143-154 (2013).
  • 38. Loser, M. and Navab, N. "A new robotic system for visually controlled percutaneous interventions under CT fluoroscopy", Proc. Medical Image Computing and Computer-Assisted Interventions (MICCAI 2000), 887 -896 (2000).
  • 39. Kennedy, C. W. , Hu, T. and Desai, J. P. "Combining haptic and visual servoing for cardiothoracic surgery", Proc. IEEE Int. Conf. Robotics and Automation, 2106 -2111 (2002).
  • 40. Krieger, A. et al “Design of a novel MRI compatible manipulator for image guided prostate interventions” IEEE Transactions on Biomedical Engineering, 52 (2): 306-313 (2005).
  • 41. Krieger, A. et al “An MRI-compatible robotic system with hybrid tracking for MRI-guided prostate intervention” IEEE Transactions on Biomedical Engineering, 58 (11): 3049-3060 (2011).
  • 42. Li, M. et al “Pneumatic actuated robotic assistant system for aortic valve replacement under MRI guidance” IEEE Transactions on Biomedical Engineering, 58 (2): 443-451 (2011).
  • 43. Iordachita, I. “Towards clinically optimized MRI-guided surgical manipulator for minimally invasive prostate percutaneous interventions: Constructive design” Proc - IEEE Int Conf on Robotics and Automation, 1228- 1233 (2013).
  • 44. Blavier, A., Nyssen, A.-S. “The effect of 2D and 3D visual modes on surgical task performance: role of expertise and adaptation processes” Cognition, Technology and Work, 16 (4): 509-518 (2014).
  • 45. Yang, B. et al “Design, development, and evaluation of a master-slave surgical system for breast biopsy under continuous MRI” Int J Robotics Research, 33 (4): 616- 630 (2014).
  • 46. Li, G. et al “Robotic System for MRI-Guided Stereotactic Neurosurgery” IEEE Transactions on Biomedical Engineering, 62 (4): 1077-1088 (2015).
  • 47. Cardenas, I.S., Kim, J.-H. “Advanced technique for teleoperated surgery using an intelligent head-mount display system” Proc - 29th Southern Biomedical Engineering Conf, SBEC 2013, 143-144 (2013).
  • 48. Carpi, F. “Robotic magnetic manoeuvring of endoscopic video capsules: Phantom tests” IFMBE Proc, 25 (6): 47-50 (2009).
  • 49. Cho, J.-Y., et al “Verification of registration method using a 3D laser scanner for orthopedic robot systems” Int Conf on Control, Automation and Systems, 460-464 (2011).
  • 50. Padoy, N., Hager, G.D. “3D thread tracking for robotic assistance in tele-surgery” IEEE Int Conf on Intelligent Robots and Systems, 2102-2107 (2011).
  • 51. Finke, M., Schweikard, A. “Usability of a robotic surgical microscope” 2010 3rd IEEE RAS and EMBS Int Conf on Biomedical Robotics and Biomechatronics, BioRob 2010, 235-240 (2010).
  • 52. Goncalves, P.J.S. et al “A Vision System for Robotic Ultrasound Guided Orthopaedic Surgery” J Intelligent and Robotic Systems: Theory and Applications, 77 (2): 327-339 (2014).
  • 53. Lee, S.-L. et al “In vivo and in situ image guidance and modelling in robotic assisted surgery” Proc of the Institution of Mechanical Engineers, Part C: J Mechanical Engineering Science, 224 (7): 1421-1434 (2010).
  • 54. Luo, R.C. et al “Surgeon's third hand: An assistive robot endoscopic system with intuitive maneuverability for laparoscopic surgery” Proc of the IEEE RAS and EMBS Int Conf on Biomedical Robotics and Biomechatronics, 138-143 (2014).
  • 55. http://www.intrasense.fr/index.php/en/solutionsen/expert-modules-xp/articles-10-en (erişim tarihi 15.03.2015).
  • 56. Moschella, D., Danieli, G.A. “Controlling the traditional rigid endoscopic instrumentation motion” Proc of EUCOMES 2008 - The 2nd European Conf on Mechanism Science, 603-611 (2009).
  • 57. Jiang, J., Xie, L., Yu, H. “A 6-axis sensor for minimally invasive robotic surgery” Lecture Notes in Computer Science 8103 LNAI (PART 2), 429-435 (2013).
  • 58. Nishikawa, A. et al “How does the camera assistant decide the zooming ratio of laparoscopic images? Analysis and implementation” Lecture Notes in Computer Science, 5242 LNCS (PART 2), 611-618 (2008).
  • 59. Serracn, J.R. et al “Kinematic analysis of a novel 2-d.o.f. orientation device” Robotics and Autonomous Systems, 60 (6): 852-861 (2012).
  • 60. Shen, J.J. et al “Viscoelastic modeling of the contact interaction between a tactile sensor and an atrial tissue” IEEE Transactions on Biomedical Engineering, 59 (6): 1727-1738 (2012).
  • 61. Wang, D. et al “A novel design of a wearable device for measuring force and torque in vascular surgery” Proc - IEEE Int Conf on Robotics and Automation, 2374- 2379 (2013).
  • 62. Wang, H. et al “Robot surgery simulation system for soft tissue cutting” Lecture Notes in Computer Science 8103 LNAI (PART 2), 535-544 (2013).
  • 63. Priester, A.M., Natarajan, S., Culjat, M. “Robotic ultrasound systems in medicine” IEEE Transactions on Ultrasonics, Ferroelectrics, and Frequency Control, 60 (3): 507-523 (2013).
  • 64. Reilink, R., Stramigioli, S., Misra, S. “Image-based hysteresis reduction for the control of flexible endoscopic instruments” Mechatronics, 23 (6): 652-658 (2013).
  • 65. Ott, L. et al “Robotic assistance to flexible endoscopy by physiological-motion tracking” IEEE Transactions on Robotics, 27 (2): 346-359 (2011).
  • 66. Tonet, O. et al “Bioinspired robotic dual-camera system for high-resolution vision” IEEE Transactions on Robotics, 24 (1): 55-64 (2008).
  • 67. Masamune, K., Hong, J. “Advanced Imaging and Robotics Technologies for Medical Applications” Int J Optomechatronics, 5 (4): 299-321 (2011).
  • 68. Torres, P.M.B. et al “Robot calibration for precise ultrasound image acquisition” Romanian Review Precision Mechanics, Optics and Mechatronics, 40: 129-134 (2011).
  • 69. Yang, B., Liu, C. “Robust 3D motion tracking for vision-based control in robotic heart surgery” Asian J Control, 16 (3): 632-645 (2014).
  • 70. http://www.emdt.co.uk/ daily-buzz/ automaticplanning- technology- facilitates-shoulder - surgery (erişim tarihi 15.03.2015).
  • 71. Burgner, J. et al “Methods for end-effector coupling in robot assisted interventions” Proc - IEEE Int Conf on Robotics and Automation, 3395-3400 (2008).
  • 72. Burgner, J., Raczkowsky, J., Woern, H. “End-effector calibration and registration procedure for robot assisted laser material processing: Tailored to the particular needs of short pulsed CO2 laser bone ablation” Proc - IEEE Int Conf on Robotics and Automation, 3091- 3096 (2009).
  • 73. Liu, Z. et al “Adaptive fuzzy wavelet neural network filter for hand tremor canceling in microsurgery” Applied Soft Computing J, 11 (8): 5315-5329 (2011).
  • 74. Rocon, E. “Assistive robotics as alternative treatment for tremor” Advances in Intelligent Systems and Computing, 252: 173-179 (2014).
  • 75. Yang, S., MacLachlan, R.A., Riviere, C.N. “Manipulator design and operation of a six-degree-offreedom handheld tremor-canceling microsurgical instrument” IEEE/ASME Transactions on Mechatronics, 20 (2): 761-772 (2015).
  • 76. Reichenspurner, H. et al "Use of the voice controlled and computer-assisted surgical system ZEUS for endoscopic coronary artery surgery bypass grafting", J. Thoracic and Cardiovascular Surgery, 118: (1999).
  • 77. Vaida, C. et al “Development of a voice controlled surgical robot” Mechanisms and Machine Science, 5: 567-574 (2010).
  • 78. Ishii, C., Futatsugi, T. “Design and control of a robotic forceps manipulator with screw-drive bending mechanism and extension of its motion space” Procedia CIRP, 5: 104-109 (2013).
  • 79. Kanno, T., et al “Design of a 4-DOF forceps manipulator for robotic surgery” 2013 IEEE/SICE Int Symposium on System Integration, SII 2013, 778-783 (2013).
  • 80. Chen, W.-W. et al “Design of micro biopsy device for wireless autonomous endoscope” Int J Precision Engineering and Manufacturing, 15 (11): 2317-2325 (2014).
  • 81. Baheti, A. et al “RoSS: Virtual reality robotic surgical simulator for the da vinci surgical system” Symposium on Haptics Interfaces for Virtual Environment and Teleoperator Systems 2008 - Proc, Haptics, 479-480 (2008).
  • 82. Banerji, A. et al “An interactive GUI for a dual-robot command console” Proc of the INDICON 2008 IEEE Conf and Exhibition on Control, Communications and Automation, 1: 98-102 (2008).
  • 83. Fu, Y., Li, H., Xie, Q. “Master-slave control technology research for abdominal minimally invasive surgery robot” ASME Int Mechanical Engineering Congress and Exposition, Proc (IMECE), 2: 569-575 (2010).
  • 84. Baek, Y.M. et al “Highly precise master-slave robot system for super micro surgery” 2010 3rd IEEE RAS and EMBS Int Conf on Biomedical Robotics and Biomechatronics, BioRob 2010, 740-745 (2010).
  • 85. Guo, J. et al “A new master-slave robotic catheter system” 2011 IEEE/ICME Int Conf on Complex Medical Engineering, CME 2011, 610-613 (2011).
  • 86. Li, H., Tadano, K., Kawashima, K. “Achieving force perception in master-slave manipulators using pneumatic artificial muscles” Proc of the SICE Annual Conf, 1342-1345 (2012).
  • 87. De Donno, A. et al “Master/slave control of flexible instruments for minimally invasive surgery” IEEE Int Conf on Intelligent Robots and Systems, 483-489 (2013).
  • 88. Honda, S. et al “Teleoperation of a Master-Slave Pneumatic Robot Arm System over the Internet: Consideration of Delay between Oregon and Fukuoka” Lecture Notes in Electrical Engineering, 253 LNEE, 1011-1018 (2013).
  • 89. Di Natali, C. et al “Closed-loop control of local magnetic actuation for robotic surgical instruments” IEEE Transactions on Robotics, 31 (1): 143-156 (2015).
  • 90. Kovacs, L., Haidegger, T., Rudas, I. “Surgery from a distance - Application of intelligent control for telemedicine” SAMI 2013 - IEEE 11th Int Symposium on Applied Machine Intelligence and Informatics, Proc, 125-129 (2013).
  • 91. Lau, H.Y.K., Wai, L.C.C. “Implementation of positionforce and position-position teleoperator controllers with cable-driven mechanisms” Robotics and ComputerIntegrated Manufacturing, 21 (2): 145-152 (2005).
  • 92. Mahdizadeh, A., Nasseri, M.A., Knoll, A. “Transparency optimized interaction in telesurgery devices via time-delayed communications” IEEE Haptics Symposium, HAPTICS, 603-608 (2014).
  • 93. Farah, E., Liu, S.G. “3D modeling and closed-form inverse kinematics solution for 6dof surgical robot” Applied Mechanics and Materials, 455: 533 - 538 (2014).
  • 94. Drake, J. M. et al. "Computer-and robot-assisted resection of thalamic astrocytomas in children", Neurosurgery, 29: 27 - 31 (1991).
  • 95. Yanof, Y. et al "CT-integreted robot for interventional procedures: Preliminary experiment and computerhuman interfaces", Comput. Aided Surgery, 6: 352 - 359 (2001).
  • 96. Miller, A. et al “From robotic hands to human hands: A visualization and simulation engine for grasping research” Industrial Robot, 32 (1): 55-63 (2005).
  • 97. Ren, H., Meng, M.Q.-H. “Investigation of the essentials for integrating off-the-shelf industrial robotics in precise computer-assisted surgery” J Mechanics in Medicine and Biology, 11 (5): 1113-1123 (2011).
  • 98. Sackier, J. M. and Wang, Y. "Robotically assisted laparoscopic surgery. From concept to development", Surgical Endoscopy, 8: 63 - 66 (1994).
  • 99. Ghodoussi, M., Butner, S. E., and Wang, Y. "Robotic surgery: the transatlantic case", Proc. IEEE Int. Conf. Robotics and Automation, 1882 -1888 (2002).
  • 100. Kazanzides, P. et al "An integrated system for cementless hip replacement", IEEE Eng. Med. Biol. Mag., 14: 307 -313 (1995).
  • 101. Guthart, G. S. and Salisbury, J. K. "The intuitive telesurgery system: Overview and application", Proc. IEEE Int. Conf. Robotics and Automation (ICRA 2000), 618 -621 (2000).
  • 102. Kode, V.R.C., Çavuşoǧlu, M.C. “Design and characterization of a novel hybrid actuator using shape memory alloy and DC micromotor for minimally invasive surgery applications” IEEE/ASME Transactions on Mechatronics, 12 (4): 455-464 (2007).
  • 103. Jingke, Y. et al “Design and development of an assisting robotic arm in minimally invasive breast surgery” 2007 IEEE Int Conf on Robotics and Biomimetics, ROBIO, 349-354 (2008).
  • 104. Cronin IV, J.A., Frecker, M., Mathew, A. “Design of a compliant endoscopic suturing instrument” 2007 Proc of the ASME Int Design Engineering Technical Confs and Computers and Information in Engineering Conf, DETC2007, 8 PART A, 625-635 (2008).
  • 105. Kratchman, L.B. et al “Design of a bone-attached parallel robot for percutaneous cochlear implantation” IEEE Transactions on Biomedical Engineering, 58 (10 PART 1): 2904-2910 (2011).
  • 106. Liang, K. et al “Control system design of a novel minimally invasive surgery robot” 2011 IEEE/ICME Int Conf on Complex Medical Engineering, CME 2011, 394-399 (2011).
  • 107. Pisla, D. “Kinematic modelling of a 5-DOF hybrid parallel robot for laparoscopic surgery” Robotica, 30 (7): 1095-1107 (2012).
  • 108. Mintenbeck, J., Estana, R., Woern, H. “Design of a modular, flexible instrument with integrated DC-motors for minimal invasive robotic surgery” IEEE/ASME Int Conf on Advanced Intelligent Mechatronics: Mechatronics for Human Wellbeing, AIM 2013, 1249- 1254 (2013).
  • 109. Boiadjiev, G. et al “Modeling and development of a robotized hand-hold bone cutting device” Applied Mechanics and Materials, 700-301: 479-483 (2013).
  • 110. Lee, R. et al “Hand-held force magnifier for surgical instruments: Evolution toward a clinical device” Lecture Notes in Computer Science 7815 LNCS, 77-89 (2013).
  • 111. MacLachlan, R.A. “Micron: An actively stabilized handheld tool for microsurgery” IEEE Transactions on Robotics, 28 (1): 195-212 (2012).
  • 112. Payne, C.J., Yang, G.-Z. “Hand-held medical robots” Annals of Biomedical Engineering, 42 (8): 1594-1605 (2014).
  • 113. Petersen, J.G., Rodriguez Baena, F. “Mass and inertia optimization for natural motion in hands-on robotic surgery” IEEE Int Conf on Intelligent Robots and Systems, 4284-4289 (2014).
  • 114. Stetten, G. et al “Hand-held force magnifier for surgical instruments” Lecture Notes in Computer Science 6689 LNCS, 90-100 (2011).
  • 115. Entsfellner, K. et al “Development of universal gripping adapters: Sterile coupling of medical devices and robots using robotic fingers” IEEE/ASME Int Conf on Advanced Intelligent Mechatronics: Mechatronics for Human Wellbeing, AIM 2013, 1464-1469 (2013).
  • 116. Chinzei, K., Kikinis, R., Jolesz, F. A. "MR compatibility of mechatronic devices: design criteria", Lecture Notes in Computer Science, 1679: 1020 -1030 (1999).
  • 117. Chinzei, K. et al "MR compatible surgical assist robot: System integration and preliminary feasibility study", Proc. 3rd Int. Conf. Medical Robotics, Imaging and Computer Assisted Surgery, 921 -930 (2000).
  • 118. Greer, A.D., Newhook, P.M., Sutherland, G.R. “Humanmachine interface for robotic surgery and stereotaxy” IEEE/ASME Transactions on Mechatronics, 13 (3): 355-361 (2008).
  • 119. Stoyanov, D. et al “Real-time stereo reconstruction in robotically assisted minimally invasive surgery” Lecture Notes in Computer Science, 6361 LNCS (PART 1), 275-282 (2010).
  • 120. Sun, Y. et al “State recognition of bone drilling with audio signal in Robotic Orthopedics Surgery System” IEEE Int Conf on Intelligent Robots and Systems, 3503-3508 (2014).
  • 121. Yu, L. “A new kinematics method based on a dynamic visual window for a surgical robot” Robotica, 32 (4): 571-589 (2014).
  • 122. Simaan, N., Taylor, R., Flint, P. “High dexterity snakelike robotic slaves for minimally invasive telesurgery of the upper airway” Lecture Notes in Computer Science, 3217 (1 PART 2), 17-24 (2004).
  • 123. Shin, W.-H., Ko, S.-Y., Kwon, D.-S. “Design of a dexterous and compact laparoscopic assistant robot” 2006 SICE-ICASE Int Joint Conf, 233-237 (2006).
  • 124. Shinsuk, P. “Safety strategies for human-robot interaction in surgical environment” 2006 SICE-ICASE Int Joint Conf, 1769-1773 (2006).
  • 125. Sharkey, N., Sharkey, A. “Robotic surgery and ethical challenges” Medical Robotics: Minimally Invasive Surgery, 276-291 (2012).
  • 126. Jang, J., Kim, Y.S. “Safety management algorithm for telesurgical robot system for brain tumor surgery” 44th Int Symposium on Robotics (2013).
  • 127. Sanchez, L.A., et al “A case study of safety in the design of surgical robots: The ARAKNES platform” Advances in Intelligent Systems and Computing, 194 AISC (VOL. 2), 121-130 (2013).
  • 128. Jin, H. et al “Safety analysis and control of a robotic spinal surgical system” Mechatronics, 24 (1): 55-65 (2014).
  • 129. Sullins, J.P. “Ethical trust in the context of robot assisted surgery” AISB 2014 - 50th Annual Convention of the AISB (2014).
  • 130. Davies, B. et al "A discussion of safety issues for medical robots", Computer-Integrated Surgery, 287 - 296 (1996).
  • 131. Du, Q., Zhang, X., Zou, L. ”Design optimization of a minimally invasive surgical robot” IEEE ICIT 2007 - 2007 IEEE Int Conf on Integration Technology, 179- 184 (2007).
  • 132. Farkoush, S.H. et al “Design and construction of a novel surgical instrument applicable in esophagectomy” IFMBE Proc, 24: 21-22 (2009).
  • 133. Chen, Y., Tanaka, S., Hunter, I.W. “Disposable endoscope tip actuation design and robotic platform” 2010 Annual Int Conf of the IEEE Engineering in Medicine and Biology Society, EMBC'10, 2279-2282 (2010).
  • 134. Kim, K.-Y. et al “Design and evaluation of a teleoperated surgical manipulator with an additional degree of freedom for laparoscopic surgery” Advanced Robotics, 24 (12): 1695-1718 (2010).
  • 135. Guo, W.Z., Gao, F. “Solution space atlases, workspace characteristics charts and joint space maps for the design of planar serial manipulators” Mechanism and Machine Theory, 45 (3): 392-407 (2010).
  • 136. Nelson, C.A., Zhang, X. “Equivalent mechanisms techniques for redesign of a spherical surgical tool manipulator” Proc of the ASME Design Engineering Technical Conf, 2 (PARTS A AND B), 11-17 (2010).
  • 137. Ohno, S., Hiroki, C., Yu, W. “Design and manipulation of a suction-based micro robot for Moving in the abdominal Cavity” Advanced Robotics, 24 (12): 1741- 1761 (2010).
  • 138. Pisla, D. “On the dynamics of a 5 DOF parallel hybrid robot used in minimally invasive surgery” Mechanisms and Machine Science, 5: 691-699 (2010).
  • 139. Phee, S.J. et al “Design of a master and slave transluminal endoscopic robot for natural orifice transluminal endoscopic surgery” Proc of the Institution of Mechanical Engineers, Part C: J Mechanical Engineering Science, 224 (7): 1495-1503 (2010).
  • 140. Pisla, D. et al “Kinematics and workspace modeling of a new hybrid robot used in minimally invasive surgery” Robotics and Computer-Integrated Manufacturing, 29 (2): 463-474 (2013).
  • 141. Pisla, D., et al “An active hybrid parallel robot for minimally invasive surgery” Robotics and ComputerIntegrated Manufacturing, 29 (4): 203-221 (2013).
  • 142. Garg, A. et al “Design and development of in vivo robot for biopsy” Mechanics Based Design of Structures and Machines, 42 (3): 278-295 (2014).
  • 143. Hong, M.B., Jo, Y.-H. “Design of a novel 4-DOF wristtype surgical instrument with enhanced rigidity and dexterity” IEEE/ASME Transactions on Mechatronics, 19 (2): 500-511 (2014).
  • 144. Pile, J., Simaan, N. “Modeling, design, and evaluation of a parallel robot for cochlear implant surgery” IEEE/ASME Transactions on Mechatronics, 19 (6): 1746-1755 (2014).
  • 145. Feng, M. “Design and implementation of the robotic end effector for minimally invasive celiac surgery” Jiqiren/Robot, 31 (1): 47-52 (2009).
  • 146. Lee, J. et al “Cooperative robotic assistant with drill-bywire end-effector for spinal fusion surgery” Industrial Robot, 36 (1): 60-72 (2009).
  • 147. Piccigallo, M. et al “Design of a novel bimanual robotic system for single-port laparoscopy” IEEE/ASME Transactions on Mechatronics, 15 (6): 871-878 (2010).
  • 148. Sekiguchi, Y. et al “Development of a tool manipulator driven by a flexible shaft for Single-Port Endoscopic Surgery” J Robotics and Mechatronics, 23 (6): 1115- 1124 (2011).
  • 149. Terry, B.S. et al “Single-port-access surgery with a novel magnet camera system” IEEE Transactions on Biomedical Engineering, 59 (4): 1187-1193 (2012).
  • 150. Choi, H., et al “Surgical robot for single-incision laparoscopic surgery” IEEE Transactions on Biomedical Engineering, 61 (9): 2458-2466 (2014).
  • 151. Seung, S. et al “Single-port robotic manipulator system for brain tumor removal surgery: SiromanS” Mechatronics, 26: 16-28 (2015).
  • 152. Stoianovici, D. et al "An efficient needle injection technique and radiological guidance method for percutaneous procedures", Proc. 1st Joint Conf.: CRVMed II &, MRCAS III, 295 -298 (1997).
  • 153. Stoianovici, D. et al "A modular surgical robotic system for image-guided percutaneous procedures", Proc. Medical Image Computing and Computer-Assisted Interventions (MICCAI',98), 404 -410 (1998).
  • 154. Xu, K. et al “System design of an insertable robotic effector platform for Single Port Access (SPA) surgery” 2009 IEEE/RSJ Int Conf on Intelligent Robots and Systems, IROS 2009, 5546-5552 (2009).
  • 155. Ding, J. et al “Design, simulation and evaluation of kinematic alternatives for insertable robotic effectors platforms in single port access surgery” Proc - IEEE Int Conf on Robotics and Automation, 1053-1058 (2010).
  • 156. Zahraee, A.H. et al “Robotic hand-held surgical device: Evaluation of end-effector's kinematics and development of proof-of-concept prototypes” Lecture Notes in Computer Science, 6363 LNCS (PART 3), 432-439 (2010).
  • 157. Berenson, D., Abbeel, P., Goldberg, K. “A robot path planning framework that learns from experience” Proc - IEEE Int Conf on Robotics and Automation, 3671- 3678 (2012).
  • 158. Jackson, R.C., Cavusoglu, M.C. “Needle path planning for autonomous robotic surgical suturing” Proc - IEEE Int Conf on Robotics and Automation, 1669-1675 (2013).
  • 159. Berkelman, P., Ma, J. “A compact modular teleoperated robotic system for laparoscopic surgery” Int J Robotics Research, 28 (9): 1198-1215 (2009).
  • 160. Boiadjiev, G. et al “Robotized system for bone drilling and cutting in orthopedic surgery” Advanced Materials Research, 740: 92-98 (2013).
  • 161. Brett, P.N. et al “A smart generic micro-drilling tool applied in cochleostomy” IFMBE Proc, 25 (6): 314-316 (2009).
  • 162. Castro, C.A. et al “A wireless robot for networked laparoscopy” IEEE Transactions on Biomedical Engineering, 60 (4): 930-936 (2013).
  • 163. Chen, Y.Q., Sun, P.L. “Medical image processing system for minimally invasive spine surgery” Advances in Intelligent and Soft Computing, 128: 177-182 (2011).
  • 164. Chow, D.-L. et al “A novel vision guided knot-tying method for autonomous robotic surgery” IEEE Int Conf on Automation Science and Engineering, 504-508 (2014).
  • 165. Chow, D.-L., Newman, W. “Improved knot-tying methods for autonomous robot surgery” IEEE Int Conf on Automation Science and Engineering, 461-465 (2013).
  • 166. Davies, B.L. “Robotic orthopedic surgery: From research to spin-off to acquisition” 18th Annual Int Conf on Mechatronics and Machine Vision in Practice 2011, M2VIP 2011, 138-157 (2011).
  • 167. Davies, B.L. et al “The Acrobot® system for robotic mis total knee and uni-condylar arthroplasty” Int J Humanoid Robotics, 3 (4): 417-428 (2006).
  • 168. Ding, J., Simaan, N. “Choice of handedness and automated suturing for anthropomorphic dual-arm surgical robots” Robotica, 72 (2014).
  • 169. Grossmann, C.M. “A new AS-display as part of the MIRO lightweight robot for surgical applications” Proc of SPIE - The Int Society for Optical Engineering, 7524, art. no. 752403 (2010).
  • 170. Jacob, M.G., Li, Y.-T., Wachs, J.P. “A gesture driven robotic scrub nurse” Conf Proc - IEEE Int Conf on Systems, Man and Cybernetics, 2039-2044 (2011).
  • 171. Kanaan, M. “Ranging based on maximum likelihood techniques for ultra wideband medical implants” IEEE Int Symposium on Personal, Indoor and Mobile Radio Communications, PIMRC, 2234-2238 (2011).
  • 172. Kim, D. et al “Development of a medical robot system for pedicle screw surgery assisted by fluoroscopic X-ray image” Proc of IEEE Workshop on Advanced Robotics and its Social Impacts, ARSO, 62-65 (2011).
  • 173. Kim, L., Tang, S.C., Yoo, S.-S. “Prototype modular capsule robots for capsule endoscopies” Int Conf on Control, Automation and Systems, 350-354 (2013).
  • 174. Kim, Y.H., le Minh, H. “A laboratory-level surgical robot system for minimal invasive surgery (MIS) total knee arthroplasty” Int J Precision Engineering and Manufacturing, 12 (2): 237-242 (2011).
  • 175. Lee, W.-Y., Shih, C.-L. “Control and breakthrough detection of a three-axis robotic bone drilling system” Mechatronics, 16 (2): 73-84 (2006).
  • 176. Leonard, S. “Smart tissue anastomosis robot (STAR): A vision-guided robotics system for laparoscopic suturing” IEEE Transactions on Biomedical Engineering, 61 (4): 1305-1317 (2014).
  • 177. Lum, M.J.H. et al “The RAVEN: Design and validation of a telesurgery system” Int J Robotics Research, 28 (9): 1183-1197 (2009).
  • 178. Luo, H., Ding, J., Wang, S. “A master-slave robot system for minimally invasive laryngeal surgery” 2009 IEEE Int Conf on Robotics and Biomimetics, ROBIO 2009, 782-787 (2009).
  • 179. Moral, A.I. et al “Paranasal sinuses segmentation/reconstruction for robot assisted endonasal surgery” Proc of VIPIMAGE 2007 - 1st ECCOMAS Thematic Conf on Computational Vision and Medical Image Processing, 175-182 (2008).
  • 180. Patronik, N.A., Zenati, M.A., Riviere, C.N. “Crawling on the heart: A mobile robotic device for minimally invasive cardiac interventions” Lecture Notes in Computer Science, 3217 (1 PART 2), 9-16 (2004).
  • 181. Raabe, D., Dogramadzi, S., Atkins, R. “Semi-automatic percutaneous reduction of intra-articular joint fractures - An initial analysis” Proc - IEEE Int Conf on Robotics and Automation, 2679-2684 (2012).
  • 182. Seung, S. et al “Development of image guided masterslave system for minimal invasive brain surgery” Joint 41st Int Symposium on Robotics and 6th German Conf on Robotics 2010, ISR/ROBOTIK 2010, 2: 710-715 (2010).
  • 183. Russo, S., Dario, P., Menciassi, A. “A novel robotic platform for laser-assisted transurethral surgery of the prostate” IEEE Transactions on Biomedical Engineering, 62 (2): 489-500 (2014).
  • 184. Tadano, K., Kawashima, K. “Development of a masterslave system with force-sensing abilities using pneumatic actuators for laparoscopic surgery” Advanced Robotics, 24 (12): 1763-1783 (2010).
  • 185. Taylor, R. et al “A sensory-guided surgical micro-drill” Proc of the Institution of Mechanical Engineers, Part C: J Mechanical Engineering Science, 224 (7): 1531- 1537 (2010).
  • 186. Wang, T. et al “A removable hybrid robot system for long bone fracture reduction” Bio-Medical Materials and Engineering, 24 (1): 501-509 (2014).
  • 187. Wang, X.-T. et al “Structure design and master-slave control system of a vascular interventional robot” 2011 IEEE Int Conf on Robotics and Biomimetics, ROBIO 2011, 252-257 (2011).
  • 188. Westphal, R. et al “Robot-assisted long bone fracture reduction” Int J Robotics Research, 28 (10): 1259-1278 (2009).
  • 189. Wolf, A., Jaramaz, B. “MBARS: Mini bone attached robotic system for joint arthroplasty” Proc of the First IEEE/RAS-EMBS Int Conf on Biomedical Robotics and Biomechatronics, 2006, BioRob 2006, 1053-1058 (2006).
  • 190. Taylor, R. H. et al "A model-based optimal planning and execution system with active sensing and passive manipulation for augmentation of human precision in computer-integrated surgery", Proc. 2nd Int. Symp. Experimental Robotics (1991).
  • 191. Taylor, R. H. et al "A passive/active manipulation system for surgical augmentation", Proc. 1st Int. Workshop on Mechatronics in Medicine (1992).
  • 192. Taylor, R. H. et al "Augmentation of human precision in computer-integrated surgery", Innovation et Technol. Biol. Med., 13: 450 -459 (1992).
  • 193. Potamianos, P., Davies, B. L., Hibberd, R. D. "Intraoperative imaging guidance for keyhole surgery methodology and calibration", Proc. 1st Int. Symp. Medical Robotics and Computer Assisted Surgery, 1: 98 -104 (1994).
  • 194. Schneider, O., Troccaz, J. "A six-degree-of-freedom passive arm with dynamic constraints (PADyC) for cardiac surgery application: Preliminary experiments", Comput. Aided Surgery, 6: 340 - 351 (2001).
  • 195. Lee, H., Choi, Y., Yi, B.-J. “Stackable 4-BAR manipulators for single port access surgery” IEEE/ASME Transactions on Mechatronics, 17 (1): 157-166 (2012).
  • 196. Rivas-Blanco, I. et al “Force-position control for a miniature camera robotic system for single-site surgery” IEEE Int Conf on Intelligent Robots and Systems, 3065-3070 (2013).
  • 197. Rivas-Blanco, I. et al “Single incision laparoscopic surgery using a miniature robotic system” IFMBE Proc, 41: 105-108 (2014).
  • 198. Dimaio, S., Hanuschik, M., Kreaden, U. “The Da Vinci surgical system” Surgical Robotics: Systems Applications and Visions, 199-217 (2011).
  • 199. Li, J. et al “A class of 2-degree-of-freedom planar remote center-of-motion mechanisms based on virtual parallelograms” J Mechanisms and Robotics, 6 (3): art. no. 031014 (2014).
  • 200. Locke, R.C.O., Patel, R.V. ”Optimal remote center-ofmotion location for robotics-assisted minimally-invasive surgery” Proc - IEEE Int Conf on Robotics and Automation, 1900-1905 (2007).
  • 201. Marinho, M.M., Bernardes, M.C., Bó, A.P.L. “A programmable remote center-of-motion controller for minimally invasive surgery using the dual quaternion framework” Proc of the IEEE RAS and EMBS Int Conf on Biomedical Robotics and Biomechatronics, 339-344 (2014).
  • 202. Mitsuishi, M. et al "A telemicrosurgery system with colocated view and operation points and rotationalforce-feedback-free master manipulator", Proc. 2nd Int. Symp. Medical Robotics and Computer Assisted Surgery, 111 -118 (1995).
  • 203. Cutting, C. B. et al "Applications of simulation, morphometrics and robotics in craniofacial surgery", Computer-Integrated Surgery, 641 - 662 (1996).
  • 204. Lavallee, S. et al "Image-guided operating robot: a clinical application in stereotactic neurosurgery", Computer-Integrated Surgery, 343 - 352 (1996).
  • 205. Taylor, R. H. et al "A telerobotic assistant for laparoscopic surgery", IEEE Eng. Med. Biol. Mag., 14: 279 -287 (1995).
  • 206. Kobayashi, E. et al "A new safe laparoscopic manipulator system with a five-bar linkage mechanism and an optical zoom", Comput. Aided Surgery, 4: 182 - 192 (1999).
  • 207. Taylor, R. H. et al "A steady-hand robotic system for microsurgical augmentation", Int. J. Robot. Res., 18: (1999).
  • 208. Begin, E. et al "A robotic camera for laparoscopic surgery: conception and experimental results", Surgical Laparoscopy and Endoscopy, 5: (1995)
  • 209. Sackier J. M. et al "Robotically assisted laparoscopic surgery: from concept to development", ComputerIntegrated Surgery, 577 -580 (1996).
  • 210. Berkelman, P. et al "A compact, compliant laparoscopic endoscope manipulator", Proc. IEEE Int. Conf. Robotics and Automation, 1870 -1875 (2002).
  • 211. Carbone, G., Ceccarelli, M. “A serial-parallel robotic architecture for surgical tasks” Robotica, 23 (3): 345- 354 (2005).
  • 212. Sang, H., He, C., Li, J., Zhang, L. “Dynamic modeling and trajectory tracking control for a 3-DOF instrument in minimally invasive surgery” 2009 IEEE Int Conf on Robotics and Biomimetics, ROBIO 2009, 331-336 (2009).
  • 213. Savioz, G., Perriard, Y. “Miniature short-stroke linear actuator” IEEE Industry Applications Magazine, 17 (6): 14-19 (2011).
  • 214. Seow, C.M., Chin, W.J., Nelson, C.A. “Robot kinematic design studies for natural orifice surgery” Proc of the ASME Design Engineering Technical Conf, 6 (PARTS A AND B), 605-613 (2011).
  • 215. Shang, J., et al “Design of a multitasking robotic platform with flexible arms and articulated head for Minimally Invasive Surgery” IEEE Int Conf on Intelligent Robots and Systems, 1988-1993 (2012).
  • 216. Tang, C., Zhang, J., Cheng, S. “Kinematics analysis for a hybrid robot in minimally invasive surgery” 2009 IEEE Int Conf on Robotics and Biomimetics, ROBIO 2009, 1941-1946 (2009).
  • 217. Tawfik, K., Ata, A.A., Al-Tabey, W.A. “Kinematics and dynamics analysis of micro-robot for surgical applications” World J Modelling and Simulation, 5 (1): 22-29 (2009).
  • 218. Voros, S. et al “ViKY robotic scope holder: Initial clinical experience and preliminary results using instrument tracking” IEEE/ASME Transactions on Mechatronics, 15 (6): 879-886 (2010).
  • 219. Wang, H. et al ”A novel surgery robotic system used for minimally invasive” Int J Innovative Computing, Information and Control, 10 (2): 617-629 (2014).
  • 220. Webster III, R.J., Romano, J.M., Cowan, N.J. “Kinematics and calibration of active cannulas” Proc - IEEE Int Conf on Robotics and Automation, 3888- 3895 (2008).
  • 221. Ye, R., Chen, Y., Yau, W. “A simple and novel hybrid robotic system for robot-assisted femur fracture reduction” Advanced Robotics, 26 (1-2): 83-104 (2012).
  • 222. Frasson, L. et al “Early developments of a novel smart actuator inspired by nature” 15th Int Conf on Mechatronics and Machine Vision in Practice, M2VIP'08, 163-168 (2008).
  • 223. Haraguchi, D., Tadano, K., Kawashima, K. “Development of a pneumatically-driven robotic forceps with a flexible wrist joint” Procedia CIRP, 5: 61-65 (2013).
  • 224. He, C., et al “Kinematics analysis of the coupled tendondriven robot based on the product-of-exponentials Formula” Mechanism and Machine Theory, 60: 90-111 (2013).
  • 225. Olds, K.C. et al “Preliminary evaluation of a new microsurgical robotic system for head and neck surgery” IEEE Int Conf on Intelligent Robots and Systems, 1276-1281 (2014).
  • 226. Sheridan, T. B. et al "Haptics and supervisory control in telesurgery", Proc. 41st Human Factors and Ergonomics Society, 2, 1134 -1137 (1997).
  • 227. Adams, L. et al "CAS, a navigation support for surgery", 3D Imaging in Medicine, 411 - 423, Springer-Verlag (1990).
  • 228. Smith, K. R., Frank, K. J., Bucholz, R. D. "The neurostation, a highly accurate minimally invasive solution to frameless stereotactic neurosurgery", Comput. Med. Imaging Graph., 18: 247 -256 (1994).
  • 229. Taylor, R. H. et al "A telerobotic assistant for laparoscopic surgery", Computer-Integrated Surgery, 581 -592 (1996).
  • 230. Reinhardt, H. F. et al "Neuronavigation: a ten years review", Computer-Integrated Surgery, 329 - 342, MIT Press (1996).
  • 231. DiGioia, A. M. et al "HipNav: pre-operative planning and intra-operative navigational guidance for acetabular implant placement in total hip replacement surgery", Comput. Assisted Orthopedic Surgery (1996).
  • 232. Simon, D. A. et al "Development and validation of a navigational guidance system for acetabular implant placement", Proc. 1st Joint Conf. CVRMed and MRCAS, 583 -592 (1997).
  • 233. Nolte, L. P. et al "Use of C-arm for surgical navigation in the spine", Proc. CAOS/USA',98 (1998).
  • 234. Yang, J., Yang, B., Cui, F. “Design of a computer aided surgical navigation system based on C-arm” Proc of the IEEE Int Conf on Automation and Logistics, ICAL 2008, 73-76, (2008).
  • 235. Zhai, W., Zhao, Y., Jia, P. “A navigation system for minimally invasive abdominal intervention surgery robot” 2008 IEEE Int Conf on Robotics, Automation and Mechatronics, RAM 2008, 819-823, (2008).
  • 236. Bauzano, E. et al “Control methodologies for endoscope navigation in robotized laparoscopic surgery” Communications in Computer and Information Science, 82 CCIS, 11-22 (2010).
  • 237. Bauzano, E., Muñoz, V.F., Garcia-Morales, I. “A multibehaviour algorithm for auto-guided movements in surgeon assistance” Int J Mechanics and Control, 12 (1): 35-41 (2011).
  • 238. Wang, Y., Xiao, N., Guo, S. “Design of a surgeon's controller for catheter navigation” IEEE Int Conf on Mechatronics and Automation, IEEE ICMA 2013, 974-978 (2013).
  • 239. Bauzano, E. et al “Robot collaborative assistance for suture procedures via minimally invasive surgery” Advances in Intelligent Systems and Computing, 252: 255-269 (2014).
  • 240. Uecker, D. R. et al "A speech-directed multi-modal man-machine interface for robotically enhanced surgery", Proc. 1st Int. Symp. Medical Robotics and Computer Assisted Surgery (MRCAS ',94), 176 -183 (1994).
  • 241. Howe, R. D. et al "Remote palpation technology", IEEE Eng. Med. Biol. Mag., 318 - 323 (1995).
  • 242. Aulignac, D. D, Balaniuk, R., Laugier, C. "A haptic interface for a virtual exam of the human thigh", Proc. IEEE Int. Conf. Robotics and Automation, 2452 -2457 (2000).
  • 243. Kumar, R. et al "Preliminary experiments in cooperative human/robot force control for robot assisted microsurgical manipulation", Proc. Int. Conf. Robotics and Automation, 610 -617 (2000).
  • 244. Kumar, R. An augmented steady-hand system for precise micromanipulation, PhD thesis, The Johns Hopkins Univ (2001).
  • 245. Berkelmann, P. J. et al "Performance evaluation of a cooperative manipulation microsurgical assistant robot applied to stapedotomy", Proc. Medical Image Computing and Computer-Assisted Interventions (MICCAI 2001), 1426 -1429 (2001).
  • 246. Nudehi, S.S., Mukherjee, R., Ghodoussi, M. “A sharedcontrol approach to haptic interface design for minimally invasive telesurgical training” IEEE Transactions on Control Systems Technology, 13 (4): 588-592 (2005).
  • 247. Fujino, S. et al “Displaying feeling of cutting by a micro-scissors type haptic device” Proc - IEEE Int Conf on Robotics and Automation, 2067-2072 (2008).
  • 248. Holbert, B., Huber, M. “Building a haptically enhanced computer desktop for the physically disabled using a force feedback mouse” Proc of the 4th IASTED Int Conf on Telehealth and Assistive Technologies, Telehealth/AT 2008, 25-30 (2008).
  • 249. Gyurka, B. et al “The control of the PARAMIS parallel robot using a haptic device” 2010 IEEE Int Conf on Automation, Quality and Testing, Robotics, AQTR 2010 - Proc, 1: 354-359 (2010).
  • 250. Perreault, S. et al “A 7-DOF haptics-enabled teleoperated robotic system: Kinematic modeling and experimental verification” 2010 3rd IEEE RAS and EMBS Int Conf on Biomedical Robotics and Biomechatronics, BioRob 2010, 906-911 (2010).
  • 251. Sun, Z., Wang, Z., Phee, S.J. “Towards haptics enabled surgical robotic system for NOTES” IEEE Conf on Robotics, Automation and Mechatronics, RAM - Proc, 229-233 (2011).
  • 252. Li, H., et al “Achieving haptic perception in forceps manipulator using pneumatic artificial muscle” IEEE/ASME Transactions on Mechatronics, 18 (1): 74-85 (2013).
  • 253. Sun, Z., Wang, Z., Phee, S.J. “Haptic modeling of stomach for real-time property and force estimation” J Mechanics in Medicine and Biology, 13 (3): (2013).
  • 254. Syed, A.A. et al “Maxillofacial surgical robotic manipulator controlled by haptic device with force feedback” ICME Int Conf on Complex Medical Engineering, CME 2013, 363-368 (2013).
  • 255. Yoon, S.-M., Choi, W.-H., Lee, M.-C. “Backlash compensation by smooth backlash inverse for haptic master device using cable-conduit” Int Conf on Control, Automation and Systems, 127-132 (2014).
  • 256. Lee, D.-H., Kim, U., Choi, H.R. “Development of multiaxial force sensing system for haptic feedback enabled minimally invasive robotic surgery” IEEE Int Conf on Intelligent Robots and Systems, 4309-4314 (2014).
  • 257. Marbán, A. et al ”Haptic feedback in surgical robotics: Still a challenge” Advances in Intelligent Systems and Computing, 252: 245-253 (2014).
  • 258. Azuma, D., Lee, J., Narumi, K., Arai, F. “Fabrication and feedback control of an articulated microarm” Proc - IEEE Int Conf on Robotics and Automation, 3073- 3078 (2009).
  • 259. McMahan, W. et al “Tool contact acceleration feedback for telerobotic surgery” IEEE Transactions on Haptics, 4 (3): 210-220 (2011).
  • 260. Schäfer, F., Zoppi, M., Molfino, R. “Design of a 6-DOF force-feedback joystick for robotic laparoscopic surgery” 39th Int Symposium on Robotics, ISR 2008, 808-813 (2008).
  • 261. Trejo, F., Hu, Y. “Suitability of two models of torque feedback for performing a robot-assisted circular tracing task” Proc - 2013 IEEE Int Conf on Systems, Man, and Cybernetics, SMC 2013, 3366-3371 (2013).
  • 262. Boonvisut, P., Çavuşoǧlu, M.C. “Estimation of soft tissue mechanical parameters from robotic manipulation data” IEEE/ASME Transactions on Mechatronics, 18 (5): 1602-1611 (2013).
  • 263. Dong, J., Zhang, L., Yu, L., Liu, E. “Puncture locating for laparoscopic robot in minimally invasive surgery” Proc - 2008 2nd Int Symposium on Intelligent Information Technology Application, IITA 2008, 1: 658-662 (2008).
  • 264. Duchemin, G. et al “A hybrid position/force control approach for identification of deformation models of skin and underlying tissues” IEEE Transactions on Biomedical Engineering, 52 (2): 160-170 (2005).
  • 265. Gherman, B. et al “Development of inverse dynamic model for a surgical hybrid parallel robot with equivalent lumped masses” Robotics and ComputerIntegrated Manufacturing, 28 (3): 402-415 (2012).
  • 266. Hu, T. et al “Insertable surgical imaging device with pan, tilt, zoom, and lighting” Proc - IEEE Int Conf on Robotics and Automation, 2948-2953 (2008).
  • 267. Jiang, J. et al “Development of a six-dimensional sensor for minimally invasive robotic surgery” J Mechanics in Medicine and Biology, 14 (5): (2014).
  • 268. Rosen, J. et al “Macro and micro soft-tissue biomechanics and tissue damage: Application in surgical robotics” Surgical Robotics: Systems Applications and Visions, 583-618 (2011).
  • 269. Schwalb, W., Shirinzadeh, B., Smith, J. “Surgical slave with a novel method for force sensing and trocar friction reduction” Advanced Materials Research, 622: 1362- 1367 (2013).
  • 270. Tanaka, T., Guo, S., Xiao, N. “Development of a doctor's finger motion measurement device for a remote catheter operating system” IEEE Int Conf on Mechatronics and Automation, IEEE ICMA 2013, 963-967 (2013).
  • 271. Teoh, S.H., Chui, C.K. “Bone material properties and fracture analysis: Needle insertion for spinal surgery” J the Mechanical Behavior of Biomedical Materials, 1 (2): 115-139 (2008).
  • 272. Wang, X., Qi, H.J., Rentschler, M.E. “Analysis of wheel-tissue interaction for in vivo robotic mobility” ASME Int Mechanical Engineering Congress and Exposition, Proc (IMECE), 9: 685-694 (2010).
  • 273. Yang, B., Wong, W.-K., Liu, C., Poignet, P. “3D softtissue tracking using spatial-color joint probability distribution and thin-plate spline model” Pattern Recognition, 47 (9): 2967-2973 (2014).
  • 274. Zemiti, N., Ortmaier, T., Morel, G. “A new robot for force control in minimally invasive surgery” IEEE/RSJ Int Conf on Intelligent Robots and Systems (IROS), 4: 3643-3648 (2004).
  • 275. Kim, K.-Y. et al “Human arm-like surgical robot system with force reflection measurement for minimally invasive surgery” Proc of the 14th Int Symposium on Artificial Life and Robotics, AROB 14th'09, 313-316 (2009).
  • 276. Kosari, S.N. et al “Robotic compression of soft tissue” Proc - IEEE Int Conf on Robotics and Automation, 4654-4659 (2012).
  • 277. Li, M., Gu, A., Yang, S., Lu, C. “Simulation of whisker sensor in robotic assisted beating cardiac surgery” Advanced Materials Research, 403-408: 4073-4078 (2012).
  • 278. Luo, R.C. et al “Cartesian position and force control with adaptive impedance/compliance capabilities for a humanoid robot arm” Proc - IEEE Int Conf on Robotics and Automation, 496-501 (2013).
  • 279. Mayer, H. et al “A system for robotic heart surgery that learns to tie knots using recurrent neural Networks” IEEE Int Conf on Intelligent Robots and Systems, 543-548 (2006).
Politeknik Dergisi-Cover
  • ISSN: 1302-0900
  • Yayın Aralığı: Yılda 4 Sayı
  • Başlangıç: 1998
  • Yayıncı: GAZİ ÜNİVERSİTESİ
Sayıdaki Diğer Makaleler

Mühendislik Bakış Açısıyla Cerrahi Robot Teknolojisinde Mevcut Durum Ve Beklentiler: Literatür Taraması

Süleyman TAŞGETİREN, Mehmet Emir YALVAÇ, Özgür VERİM

Atomik Tabaka Biriktirme Metodu ile Üretilen HfO2 Tabanlı Sensörlerin Hidrojen Gaz Algılama Özelliklerinin İncelenmesi

Irmak KARADUMAN, Özlem BARİN, Dilber Esra YILDIZ, Selim ACAR

Cholesteryl Octanoate Tek Kristalinde Işınlama ile Oluşan Radikalin ESR Tekniği Kullanılarak Belirlenmesi

Ülkü SAYIN, Sami BÜYÜKÇELEBİ, Ayhan ÖZMEN

Eş Kanallı Açısal Presleme ve Toz Metalurjisi Yöntemiyle İşlenmiş Elementel Tozlardan Yaşlandırılabilir Al-%4Cu Alaşımların Üretimi Üzerine Bir Çalışma

Gözde VAREL, Ahmet GÜRAL

Rüzgar ve Termik Santrallerden Oluşan Enerji Sistemlerinde Ekonomik Güç Dağılımının Big-Bang Big-Crunch, PSO ve IMO Algoritmaları ile İrdelenmesi

Alp KARADENİZ, Mehmet Kubilay EKER

Ön Karışımsız ve Ön Karışımlı Metan Alevlerinin Baca Yanma Parametrelerinin Deneysel Olarak İncelenmesi

Mustafa İLBAŞ, Serhat KARYEYEN, Kazım ÇİLİNGİR

Soğuk Derzin Betonun Eğilme ve Doğrudan Çekme Dayanımı Üzerindeki Etkisinin Araştırılması

Nursultan KADYROV, Salih YAZICIOĞLU

Yeni R2L2D Devresinde Kaotik ve Düzenli Bölgeler Arasında Yeni Bir Yukarı/Aşağı Geçiş Olgusu

Erol KURT, Cihan BİNGÖL

Genelleştirilmiş Öngörmeli Kontrol ile Kablosuz Sıcaklık Profillerinin Karşılaştırılması

Adnan ALDEMİR, Hale HAPOĞLU

Konutlarda Odun Esaslı Malzemelerin Havanın Bağıl Nemine Etkisi – Analitik İnceleme

Kemal ÜÇÜNCÜ