Atık Cam Tozu İçeren Alkali – Aktive Edilmiş Cüruf Harçlarının Mekanik, Por Yapısı, Termal Yalıtkanlık ve Mikro Yapı Özellikleri

Enerji ve doğal kaynak tüketiminin sınırlandırılması fikri, günümüzdeki sürdürülebilirlik politikalarının odak noktasını oluşturmaktadır. Yüksek enerji gereksinimleri ve doğal kaynak tüketimleri sebebiyle çimento harçları için alternatif arayışı her geçen gün artmaktadır. Bu amaçla; bu çalışmada alkali-aktive edilmiş cüruf harçlarında atık cam tozu ilavesinin harç numunelerinin mekanik, por yapısı, termal iletkenlik ve mikro yapı özelliklerine olan etkisi araştırılmıştır. Atık cam tozu, harç karışımlarında ağırlıkça %15, %30 ve %45 oranlarında doğal kum ile yer değiştirilmiş ve tüm harç karışımlarında bağlayıcı malzeme içeriğinde çimento yerine ağırlıkça %50 oranında da cüruf tercih edilmiştir. Çalışmadan elde edilen sonuçlar, %15 seviyesindeki kum – atık cam tozu yer değişimi için sınırlı düzeydeki mekanik dayanım düşüşü ile termal yalıtkanlık özelliklerinin %35 düzeyinde artabileceğini ortaya koymuştur. Atık cam tozu katkılı alkali-aktive edilmiş cüruf harçları, üstün termal yalıtkanlık özellikleri ve sürdürülebilirlik politikalarına uyumlu çevre dostu özellikleri ile gelecekte çimento harçları yerine kullanılabilecek potansiyeli işaret etmektedir.

Mechanical, Pore Structure, Thermal Insulation and Micro Structure Properties of Alkali-Activated Slag mortars Containing Waste Glass Powder

The idea of limiting the consumption of energy and natural resources is the focal point of today's sustainability policies. Due to its high energy requirement and natural resource consumption, the studies in order to develop an alternative for conventional cement mortars are increasing day by day. For this purpose; in this study, the effect of the waste glass powder inclusion on the mechanical, pore structure, thermal conductivity and microstructure properties of the alkali-activated slag mortars was investigated. Waste glass powder was utilized as a partial replacement of sand at contents of 15%, 30% and 45% by weight and slag was used in the binder content at a level of 50% as a replacement of cement in mixtures. The results obtained from the study revealed that the thermal insulation properties could be increased by 35% with a limited level of mechanical strength reduction for the replacement of sand with waste glasss powder at the level of 15%. The alkali-activated slag mortars containing waste glass powder indicate a great potential to be used in the future instead of conventional cement mortars with their superior thermal insulation and eco-friendly properties in compliance with sustainability policies. 

___

[1]. Wong C.L., Mo K. H., Yap S. P., Alengaram U. J., Ling, T.-C., “Potential use of brick waste as alternate concrete-making materials: A review”, Journal of Cleaner Production, 195: 226-239, (2018).

[2]. Huntzinger D.N., Eatmon T.D., “A life-cycle assessment of Portland cement manufacturing: comparing the traditional process with alternative Technologies”, Journal of Cleaner Production, 17: 668–675, 2009.

[3]. Mikulcic H., Cabezas H., Vujanovic M., Duic N.C, “Environmental assessment of different cement manufacturing processes based on Emergy and Ecological Footprint analysis”, Journal of Cleaner Production, 130: 213-221, 2016.

[4]. Madlool N.A., Saidur R., Hossain M.S., Rahim N.A., “A critical review on energy use and savings in the cement industries”, Renewable and Sustainable Energy Reviews, 15: 2042-2060, 2011.

[5]. Kim G.M., Khalid R., Kim H.J., Le H.K., “Alkali activated slag pastes with surface-modified blast furnace slag”, Cement and Concrete Composites, 76: 39-47, 2017.

[6]. Huseien G.F., Mirza J., Ismail M., Ghoshal S.K., Hussein A., “Geopolymer mortars as sustainable repair material: A comprehensive review”, Renewable and Sustainable Energy Reviews, 80: 54-74, 2017.

[7]. Ding Y., Dai J.-G., Shi C.-J., “Fracture properties of alkali-activated slag and ordinary Portland cement concrete and mortar”, Construction and Building Materials, 165 :310-320, 2018.

[8]. Sobolev K., Turker P., Soboleva S., Iscioglu G., “Utilization of waste glass in ECO-cement:Strength properties and microstructural observations”,Waste Management, 27:971-976, 2007.

[9]. Ke G., Li W., Li R., Li Y., Wang G., “Mitigation Efect of Waste Glass Powders on Alkali–Silica Reaction (ASR) Expansion in Cementitious Composite”, International Journal of Concrete Structures and Materials, 12:1-14, 2018.

[10]. Mirzahosseini M., Riding K. A.,” Effect of curing temperature and glass type on the pozzolanic reactivity of glass powder”, Cement and Concrete Research, 58:103-111, 2014.

[11]. Sharifi Y., Afshoon I., Firoozjaei Z., Momeni A., 2016. “Utilization of Waste Glass Micro-particles in Producing Self-Consolidating Concrete Mixtures”, International Journal of Concrete Structures and Materials, 10: 337-353, 2016.

[12]. Schwarz N., Cam H., Neithalath N.,”Influence of a fine glass powder on the durability characteristics of concrete and its comparison to fly ash”, Cement & Concrete Composites, 30: 486-496, 2008.

[13]. Gorospe K., Booya E., Ghaednia H., Das S., “Effect of various glass aggregates on the shrinkage and expansion of cement mortar”, Construction and Building Materials, 210: 301–311, 2019.

[14]. Choi S.Y., Choi Y. S., Yang E. I.,”Effects of heavy weight waste glass recycled as fine aggregate on the mechanical properties of mortar specimens”, Annals of Nuclear Energy, 99: 372–382, 2017.

[15]. Kim I.S., Choi S. Y., Yang E. I., “Evaluation of durability of concrete substituted heavyweight waste glass as fine aggregate”, Construction and Building Materials, 184: 269–277, 2018.

[16]. Hama S.M., Mahmoud A. S., Yassen M. M.,” Flexural behavior of reinforced concrete beam incorporating waste glass powder”, Structures, 20: 510–518, 2019.

[17]. Lu J.-X., Yan X., He P., Poon C. S., “Sustainable design of pervious concrete using waste glass and recycled concrete aggregate”, Journal of Cleaner Production, 234 :1102-1112, 2019.

[18]. Khmiri A., Chaabouni M., Samet B.,” Chemical behaviour of ground waste glass when used as partial cement replacement in mortars”, Construction and Building Materials, 44: 74-80, 2013.

[19]. He Z., Zhan P., Du S., Liu B., Yuan W., “Creep behavior of concrete containing glass powder”, Composites Part B, 166: 13-20, 2019.

[20]. TS EN 196-1, 2016. Çimento deney metotları- Bölüm 1: Dayanım tayini, Türk Standartları Enstitüsü, Ankara.

[21]. TS EN 1015-11, 2000. Kagir harcı- Deney metotları- Bölüm 11: Sertleşmiş harcın basınç ve eğilme dayanımının tayini, Türk Standartları Enstitüsü, Ankara.

[22]. Jang B.-K., Lee J.-C., Kim J.-H., Chung C.-W., “Enhancement of thermal neutron shielding of cement mortar by using borosilicate glass powder”, Applied Radiation and Isotopes, 123:1–5, 2017.

[23]. Jiang Y., Ling T.-C., Mo K. H., Shi C., “A critical review of waste glass powder – Multiple roles of utilization in cement-based materials and construction products”, Journal of Environmental Management, 242: 440–449, 2019.

[24]. Topcu B.I., Canbaz M.,” Properties of concrete containing waste glass”, Cement and Concrete Research, 34: 267–274, 2004.

[25]. Šimonová H., Zahálková J., Rovnaníková P., Bayer P., Keršner Z., Schmid P., “Mechanical Fracture Parameters of Cement Based Mortars with Waste Glass Powder”, Procedia Engineering, 190: 86 – 91, 2017.

[26]. Aly M., Hashmi M.S.J., Olabi A.G., Messeiry M., Abadir E.F., Hussain A.I.,“Effect of colloidal nano-silica on the mechanical and physical behaviour of waste-glass cement mortar”, Materials and Design, 33: 127–135, 2012.

[27]. Yang S., Ling T.-C., Cui H., Poon C. S., “Influence of particle size of glass aggregates on the high temperature properties of dry-mix concrete blocks”, Construction and Building Materials, 209: 522–531, 2019.

[28]. Moretti J.P., Sales A., Quarcioni V. A., Silva D. C.B., Oliveira M. C.B., Pinto N. S., Ramos L. W.S.L., “Pore size distribution of mortars produced with agroindustrial waste”, Journal of Cleaner Production, 187: 473-484, 2018.

[29]. Park S. B., Lee B. C., Kim J. H., “Studies on mechanical properties of concrete containing waste glass aggregate”, Cement and Concrete Research, 34: 2181–2189, 2004.

[30]. Kashani A., Ngo T. D., Hajimohammadi A., “Effect of recycled glass fines on mechanical and durability properties of concrete foam in comparison with traditional cementitious fines”, Cement and Concrete Composites, 99: 120–129, 2019.

[31]. Lu J.-X., Zheng H., Yang S., He P., Poon C.S., “Co-utilization of waste glass cullet and glass powder in precast concrete products”, Construction and Building Materials, 223: 210–220, 2019.

___

Bibtex @araştırma makalesi { politeknik714390, journal = {Politeknik Dergisi}, eissn = {2147-9429}, address = {Gazi Üniversitesi Teknoloji Fakültesi 06500 Teknikokullar - ANKARA}, publisher = {Gazi Üniversitesi}, year = {2022}, volume = {25}, number = {1}, pages = {75 - 87}, doi = {10.2339/politeknik.714390}, title = {Atık Cam Tozu İçeren Alkali – Aktive Edilmiş Cüruf Harçlarının Mekanik, Por Yapısı, Termal Yalıtkanlık ve Mikro Yapı Özellikleri}, key = {cite}, author = {Bostancı, Levent} }
APA Bostancı, L. (2022). Atık Cam Tozu İçeren Alkali – Aktive Edilmiş Cüruf Harçlarının Mekanik, Por Yapısı, Termal Yalıtkanlık ve Mikro Yapı Özellikleri . Politeknik Dergisi , 25 (1) , 75-87 . DOI: 10.2339/politeknik.714390
MLA Bostancı, L. "Atık Cam Tozu İçeren Alkali – Aktive Edilmiş Cüruf Harçlarının Mekanik, Por Yapısı, Termal Yalıtkanlık ve Mikro Yapı Özellikleri" . Politeknik Dergisi 25 (2022 ): 75-87 <
Chicago Bostancı, L. "Atık Cam Tozu İçeren Alkali – Aktive Edilmiş Cüruf Harçlarının Mekanik, Por Yapısı, Termal Yalıtkanlık ve Mikro Yapı Özellikleri". Politeknik Dergisi 25 (2022 ): 75-87
RIS TY - JOUR T1 - Atık Cam Tozu İçeren Alkali – Aktive Edilmiş Cüruf Harçlarının Mekanik, Por Yapısı, Termal Yalıtkanlık ve Mikro Yapı Özellikleri AU - Levent Bostancı Y1 - 2022 PY - 2022 N1 - doi: 10.2339/politeknik.714390 DO - 10.2339/politeknik.714390 T2 - Politeknik Dergisi JF - Journal JO - JOR SP - 75 EP - 87 VL - 25 IS - 1 SN - -2147-9429 M3 - doi: 10.2339/politeknik.714390 UR - Y2 - 2020 ER -
EndNote %0 Politeknik Dergisi Atık Cam Tozu İçeren Alkali – Aktive Edilmiş Cüruf Harçlarının Mekanik, Por Yapısı, Termal Yalıtkanlık ve Mikro Yapı Özellikleri %A Levent Bostancı %T Atık Cam Tozu İçeren Alkali – Aktive Edilmiş Cüruf Harçlarının Mekanik, Por Yapısı, Termal Yalıtkanlık ve Mikro Yapı Özellikleri %D 2022 %J Politeknik Dergisi %P -2147-9429 %V 25 %N 1 %R doi: 10.2339/politeknik.714390 %U 10.2339/politeknik.714390
ISNAD Bostancı, Levent . "Atık Cam Tozu İçeren Alkali – Aktive Edilmiş Cüruf Harçlarının Mekanik, Por Yapısı, Termal Yalıtkanlık ve Mikro Yapı Özellikleri". Politeknik Dergisi 25 / 1 (Mart 2022): 75-87 .
AMA Bostancı L. Atık Cam Tozu İçeren Alkali – Aktive Edilmiş Cüruf Harçlarının Mekanik, Por Yapısı, Termal Yalıtkanlık ve Mikro Yapı Özellikleri. Politeknik Dergisi. 2022; 25(1): 75-87.
Vancouver Bostancı L. Atık Cam Tozu İçeren Alkali – Aktive Edilmiş Cüruf Harçlarının Mekanik, Por Yapısı, Termal Yalıtkanlık ve Mikro Yapı Özellikleri. Politeknik Dergisi. 2022; 25(1): 75-87.
IEEE L. Bostancı , "Atık Cam Tozu İçeren Alkali – Aktive Edilmiş Cüruf Harçlarının Mekanik, Por Yapısı, Termal Yalıtkanlık ve Mikro Yapı Özellikleri", Politeknik Dergisi, c. 25, sayı. 1, ss. 75-87, Mar. 2022, doi:10.2339/politeknik.714390