Pirofillit Cevherinden Alüminyum Titanat Üretimi

Alüminyum titanat (Al2TiO5), alümina (Al2O3) ve titanyum oksit (TiO2) bileşenlerinden yapay olarak üretilen ileri seramik bir malzemedir. Bu çalışmada alüminyum titanat üretmek için pirofillit cevherinden üretilen alümina ve ticari rutil kullanılmıştır. Çalışmada kullanılan alümina, pirofillit cevherinin HCl liçi ile elde edilen yüklü çözeltiden çöktürülen alüminyum klorür tuzunun kavrulması sonucu elde edilmiştir. Elde edilen alümina ve ticari rutil karışımı alüminyum titanat üretmek amacıyla aşırı öğütülmüş, şekillendirilmiş ve farklı sıcaklıklarda sinterlenmiştir. Sinterleme sonucu alüminyum titanat oluşumu öğütülmüş karışımda 1359 °C iken öğütülmemiş karışımda 1367 °C’dir. Aşırı öğütülmüş karışımdan daha düşük sıcaklıkta alüminyum titanat oluşması, mikroçatlak ve gözenekliliğin daha az olması mekanik aktivasyonun etkisini açıkça göstermektedir. Sonuç olarak pirofillit cevherinden hidrometalurjik süreçlerle kazanılan alüminadan, katma değeri daha yüksek olan alüminyum titanat üretilebileceği belirlenmiştir.

Production of Aluminum Titanate from Pyrophyllite Ore

Aluminum titanate (Al2TiO5) is an advanced ceramic material produced artificially from the alumina (Al2O3) and titanium oxide (TiO2) components. In this study, alumina which is produced from pyrophyllite ore and commercial rutile were used to manufacture the aluminum titanate. The alumina used in the study was obtained by roasting the aluminum chloride salt precipitated from the loaded solution obtained by HCl leaching of the pyrophyllite ore. The resulting alumina and commercial rutile mixture is intensively milled, shaped and sintered at different temperatures to produce aluminum titanate. The result of sintering is that aluminum titanate formation is at 1359 °C in the milled mixture and at 1367 °C in the unmilled mixture. Formation of aluminum titanate at a lower temperature than the unmilled mixture, much less presence of microcracks and lack of pores clearly demonstrate the effect of mechanical activation. As a result, it has been shown that aluminum titanate with high added value can be produced from alumina recovered from pyrophyllite ore by hydrometallurgical processes.

___

  • [1] Freudenberg B., “Etude de la reaction àl’état solide: Al2O3+TiO2 - Al2TiO5”, Tesis Doctoral, Eĉole Polytécnique, Lausanne, (1987).
  • [2] Yoleva A., Djambazov S., Arsenov D., Hristov V., “Effect of SiO2 addition on thermal hysteresis of aluminum titanate”, Journal of the University of Chemical Technology and Metallurgy, 45 (3), 269-274, (2010).
  • [3] Cecilia C., Flávio S., Thiago F., Luis A., “Formation of aluminum titanate with small additions of MgO and SiO2”, Materials Research, 19 (2), 384-388, (2016).
  • [4] Tsetsekov A., “A comparison study of tialite ceramics doped with various oxide materials and tialite-mullite composites: microstructural, thermal and mechanical properties”, Journal of European Ceramic Society, 25 (4), 335-348, (2005).
  • [5] Jiang L., Chen X., Hang G., Meng Y., “Effect of additives on properties of aluminium titanate ceramics”, Tranactions of Nonferrous Metal Society of China, 21 (7), 1574-1579, (2011).
  • [6] Arenas I.B., “Reactive Sintering of Aluminum Titanate, Sintering of Ceramics–New Emerging Techniques”, Arunachalam Lakshmanan (Ed.), 505-523, (2012).
  • [7] Ananthakumar S., Jayasankar M., Warrier K.G., “Microstructural, mechanical and thermal characterisation of sol–gel derived aluminium titanate–mullite ceramic composites”, Acta Materialia, 54, 2965-2973, (2006).
  • [8] Preda M., Ianculescu A., Crisana M., Jitianua A., Crisana D., Zaharescu M., “Reaction mechanisms of tialite formation in the presence of mineralizers”, Journal of Optoelectronics and Advanced Materials, 2, 563-568, (2000).
  • [9] Uysal T., Şener M., Toptaş H., Karamazı Ş.S., Yazıcı S., Eroğlu Y., Erdemoğlu M., “Mechanically induced changes on crystal structure and thermal behaviour of industrial minerals: case studies for colemanite, pyrophyllite and quartz”, International Journal of Ore Dressing, 17, 8-14, (2015).
  • [10] Göktaş M., “Mermer sanayi atıklarından yapay kalsiyum silikat üretiminde aşırı öğütmenin etkilerinin seramik malzemeler üzerinde araştırılması”, Doktora Tezi, İnönü Üniversitesi, Fen Bilimleri Enstitüsü, Malatya, (2013).
  • [11] Erdemoğlu M., “Carbothermic reduction of mechanically activated celestite”, International Journal of Mineral Processing, 92, 144-152, (2009).
  • [12] Erdemoğlu M., Birinci M., Uysal T., Bilici E., Barry T.S., “Mechanical activation of pyrophyllite ore for aluminum extraction by acidic leaching”, Journal of Material Science, 53:13801–13812, (2018).
  • [13] Uysal T., “Asit liç yöntemi ile pirofillit cevherinden alümina üretiminde aktifleştirme koşullarının araştırılması”, Doktora Tezi, İnönü Üniversitesi, Fen Bilimleri Enstitüsü, Malatya, (2018).
  • [14] Kostić E., Kiss S., Bosković S., Zec S., “Mechanical activation of the gamma to alpha transition in Al2O3”, Powder Technology, 91, 49–54, (1997).
  • [15] Zielinski P.A., Schulz R., Kaliaguine S., Van Neste A., “Structural transformations of alumina by high energy ball-milling”, Journal Material Research, 8, 2985–2992, (1993).
  • [16] Tonejc A., Stubicar M., Tonejc A.M., Kosanović K., Subotić B., Smit I., “Transformation of γ-AlOOH (boehmite) and Al(OH)3 (gibbsite) to α-Al2O3 (corundum) induced by high-energy ball-milling”, Journal Material Science Letter, 13, 519–520, (1994).
  • [17] Kosanović C., Stubicar M., Tonejc A.M., Subotić B., Smit I., “Equivalence of ball-milling and thermal treatment for phase-transformation in the Al2O3”, Journal of Alloys and Compounds, 204, L1–L3, (1994).
  • [18] Panchula M.L., Ying J.Y., “Mechanical synthesis of nanocrystalline α-Al2O3 seeds for enhanced transformation”, Nanostructural Material, 9, 161–164, (1997).
  • [19] Lang S., Fillmore L., “The system Berillia-Alumina-Titania: phase relations and general physical properties of three components porcelains”, Journal of Research of the National Bureau of Standards, 48 (4), 301-321, (1952).
  • [20] Park S.Y., Jung S.W., “The effect of starting powder on the microstructure development of alumina–aluminum titanate composites”, Ceramics International, 29:707–712, (2003).
  • [21] Chen C.H., Awaji H., “Mechanical properties of Al2TiO5 ceramics”, Key Engineering Materials, 336, 1417- 1419, (2007).
  • [22] Barsoum M.W., “Fundamentals of Ceramics”, Series in Materials Science and Engineering, New York, 624, (1997).
  • [23] Kalpakjian S., Schmid R.S.“Manufacturing Processes for Engineering Materials”, Pearson Education Inc, Sixth Edition, USA, 950, (2010).
  • [24] Aneziris C.G., Scharfl W., Ullrich B., “Microstructure evaluation of Al2O3 ceramics with Mg-PSZ and TiO2 additions”, Journal of the European Ceramic Society, 27, 3191-3199, (2007).
  • [25] Ohya Y., Hamano K., Nakagawa Z., “Crack healing and bending strength of aluminum titanate ceramics at high temperature”, Journal of The American Ceramic Society, 91(6), 289, (1983).
  • [26] Parker F.J., Rice R.W., “Correlation between grain size and thermal expansion for aluminum titanate materials”, Journal of the American Ceramic Society, 72, 2364-2366, (1989).
  • [27] Zuharescu M., Crisan M., Preda M., Fruth V., Preda S., “Al2TiO5-Based ceramics obtained by hydrothermal process”, Journal of Optoelectronics and Advanced Materials, 5, 1411–1416, (2003).
  • [28] Wei H., Yu L., Wang Z., Bu J., Ma S.L., Wang Y., “Improvement in the thermal shock resistance of zirconia ceramic by the addition of aluminum titanate”, Advanced Materials Research, 194-196, 1724-1727, (2011).
Politeknik Dergisi-Cover
  • ISSN: 1302-0900
  • Yayın Aralığı: Yılda 4 Sayı
  • Başlangıç: 1998
  • Yayıncı: GAZİ ÜNİVERSİTESİ