Radyant Panel Konumlarının ve Su Sıcaklığının Termal Konfor Üzerindeki Etkisinin Araştırılması

Dünyadaki enerji tüketimi ve çevre kirliliği gün geçtikçe artmaktadır. Enerjinin verimli kullanımı için, akademisyenler ve bilim adamları farklı modeller geliştirmiştir. Bu çalışmalardan biri yüksek sıcaklıkta soğutma sistemleridir. Radyant panel sistemleri, enerji ve ekserji açısından performansları ile yüksek sıcaklık soğutma sistemlerine örnektir. Bu çalışmada, düşük ekserji duvar tipi ve tavan radyant soğutma sistemlerinin ısıl konfor üzerindeki etkisi sayısal olarak incelenmiştir. Sayısal sonuçlar literatürdeki deneysel sonuçlarla doğrulanmıştır. Radyant panellerin içerisindeki su sıcaklığı sırasıyla 20 °C, 22 °C ve 24 °C olarak tanımlanmış ve sonuçlar PMV-PPD parametrelerine göre karşılaştırılmıştır. Altı farklı koşul araştırılmış ve sonuçlar en iyi ısıl konforun 20 °C su sıcaklığı ve tavan soğutma koşuluyla sağlandığını göstermiştir.

Investigation of The Effect of Radiant Panel Positions and Water Temperature on Thermal Comfort

Energy consumption and environmental pollution in the world are increasing day by day. For efficient use of energy, academicians and scientists have developed different models. One of these studies is high temperature cooling systems. Radiant panel systems are examples of high-temperature cooling systems with their performance. In this study, the effect of wall mounted and ceiling radiant cooling systems on thermal comfort is investigated numerically. Numerical results have been compared with the experimental data obtained from the literature and good agreement has been reached. The water temperature inside the radiant panels was defined as 20°C, 22°C and 24°C, respectively and the results were compared according to the PMV (Predicted Mean Vote) – PPD (Predicted Percentage of Dissatisfied) parameters. Six different conditions were investigated and the results show that the best thermal comfort is provided by 20°C of water temperature and the radiant ceiling condition.

___

  • [1] International Energy Agency (IEA). “Energy Technology Perspectives 2012”. Report, (2012).
  • [2] Hepbasli, A., “Low exergy (LowEx) heating and cooling systems for sustainable buildings and societies”, Renewable and Sustainable Energy Reviews, 16(1): 73-104 (2012).
  • [3] Schmidt, D., Ala-Juusela, M., “Low exergy systems for heating and cooling of buildings”, In Proceedings of the 21st conference on passive and low energy architecture, Eindhoven, The Netherlands (pp. 1-6), (2004).
  • [4] Fanger, P. O., "Thermal comfort. Analysis and applications in environmental engineering", (1970).
  • [5] Li, R., Yoshidomi, T., Ooka, R. And Olesen, B. W., “Field evaluation of performance of radiant heating/cooling ceiling panel system”, Energy and Buildings, 86: 58-65 (2015).
  • [6] Weibin, K., Min, Z., Xing, L., Xiangzhao, M., Lianying, Z. and Wangyang, H. “Experimental investigation on a ceiling capillary radiant heating system”, Energy Procedia, 75: 1380-1386 (2015).
  • [7] Zhou, G., He, J., “Thermal performance of a radiant floor heating system with different heat storage materials and heating pipes”, Applied Energy, 138: 648-660 (2015).
  • [8] Seyam, S., Huzayyin, A., El-Batsh, H. And Nada, S., “Experimental and numerical investigation of the radiant panel heating system using scale room model”, “Energy and buildings”, 82: 130-141 (2014).
  • [9] Öztürk, M., Oruç, O., “Duvardan Radyant Soğutma Sistemlerinde Soğutucu Akışkan Sıcaklığının Isıl Konfora Etkisinin İncelenmesi”, Politeknik Dergisi, 22(2): 461-468, (2019).
  • [10] ISO 7730, “Ergonomics of the thermal environment-analytical determination and interpretation of thermal comfort using calculation of the PMV and PPD indices and local thermal comfort criteria”, Geneva, Switzerland: International Organization for Standardisation, (2005).
  • [11] Rhee, K. N., Kim, K. W., “A 50 year review of basic and applied research in radiant heating and cooling systems for the built environment”, Building and Environment, 91: 166-190, (2015).
  • [12] Imanari, T., Omori, T. and Bogaki, K., "Thermal comfort and energy consumption of the radiant ceiling panel system: Comparison with the conventional all-air system", Energy and Buildings, 30: 167–175 (1999).
  • [13] Oxizidis, S., Papadopoulos, M. A., “Performance of radiant cooling surfaces with respect to energy consumption and thermal comfort”, Energy and Buildings, 57: 199-209, (2013).
  • [14] Catalina, T., Virgone, J. and Kuznik, F., "Evaluation of thermal comfort using combined CFD and experimentation study in a test room equipped with a cooling ceiling", Building and Environment, 44: 1740–1750, (2009).
  • [15] Lim, J.H., Jo, J.H., Yong, Y.K., Souk, M. and Kim, K.W., “Application of the control methods for radiant floor cooling system in residential buildings”, Building and Environment, 41: 60-73, (2006).
  • [16] Hodder, S. G., Loveday, D. L., Parsons, K. C. and Taki, A. H., "Thermal comfort in chilled ceiling and displacement ventilation environments: vertical radiant temperature asymmetry effects", Energy and Buildings, 27: 167–173, (1998).
  • [17] Zhao, K., Liu, X. H. and Jiang, Y., "Application of radiant floor cooling in large space buildings - A review", Renewable and Sustainable Energy Reviews, 55: 1083–1096, (2016).
  • [18] Fernandez Hernandez, F., Cejudo Lopez, J. M., Fernandez Gutierrez, A. and Dominguez Munoz, F., "A new terminal unit combining a radiant floor with an underfloor air system: Experimentation and numerical model", Energy and Buildings, 133: 70–78, (2016).
  • [19] Dong, J., Zhang, L., Deng, S., Yang, B., and Huang, S., “An experimental study on a novel radiant-convective heating system based on air source heat pump”, Energy and Buildings, 158: 812-821, (2018).
  • [20] Romaní, J., Cabeza, L. F., Pérez, G., Pisello, A. L., and de Gracia, A., “Experimental testing of cooling internal loads with a radiant wall”, Renewable Energy, 116: 1-8, (2018).
  • [21] Gao, S., Wang, Y. A., Zhang, S. M., Zhao, M., Meng, X. Z., Zhang, L. Y. and Jin, L. W., “Numerical investigation on the relationship between human thermal comfort and thermal balance under radiant cooling system”, Energy Procedia, 105: 2879-2884, (2017).
  • [22] Andrés-Chicote, M., Tejero-González, A., Velasco-Gómez, E. and Rey-Martínez, F. J., “Experimental study on the cooling capacity of a radiant cooled ceiling system”, Energy and Buildings, 54: 207-214, (2012).
  • [23] Cholewa, T., Rosiński, M., Spik, Z., Dudzińska, M. R. and Siuta-Olcha, A., “On the heat transfer coefficients between heated/cooled radiant floor and room”, Energy and Buildings, 66: 599-606, (2013).
  • [24] White, F. M., “Fluid Mechanics”, McGraw-Hill, 3. Edition, New York, (2003).
  • [25] Incropera, F.P., Dewitt, P.D.,” Fundamentals of Heat and Mass Transfer”, John Wiley and Sons, 3.Edition, New York (2013).
  • [26] ANSYS, “Ansys Fluent Theory Guide, Release: 15”, (2013).
  • [27] Bardina, J.E., Huang, P.G. and Coakley, T.J., “Turbulence Modeling Validation, Testing, and Development”, NASA technical memorandum, California, (1997).
  • [28] Yuan, X., “Wall Functions for Numerical Simulation of Natural Convection along Vertical Surfaces”, MSc Thesis, ETH Zürich, Zürih, (1995).
  • [29] ANSYS. “Ansys Fluent Release 15.0 User’s Guide”,( 2015).
  • [30] https://www.ansys.com/products/fluids/ansys-fluent
  • [31] Alarko Carrier Sanayi ve Ticaret A.Ş., “Şehirlerin Yaz ve Kış Dış Hava Tasarım Sıcaklıkları”, https://www.alarko- carrier.com.tr/tr/TeknikDestek/DisHavaTasarimSicakliklari.pdf, 08 Ekim 2018.
  • [32] ASHRAE. “Panel heating and cooling. in: ASHRAE HVAC Systems & Equipments”, ASHRAE, (2008).
  • [33] Underwood, C., Yik, F., “Modelling methods for energy in buildings”, John Wiley & Sons, (2008).
  • [34] ANSI/ASHRAE-Standard 138, “Standard 138-Method of Testing for Rating Ceiling Panels for Sensible Heating and Cooling”, ANSI/ASHRAE, Atlanta, (2013).
  • [35] ISO 7730, “Ergonomics of the thermal environment — Analytical determination and interpretation of thermal comfort using calculation of the PMV and PPD indices and local thermal comfort criteria”, (2015).
  • [36] Evren, M. F., Özsunar, A. and Kılkış, B., ”Experimental investigation of energy-optimum radiant-convective heat transfer split for hybrid heating systems”, Energy and Buildings, 127: 66-74, (2016).
  • [37] ASHRAE 55, “Thermal Environmental Conditions for Human Occupancy”, (2013).