Aromatik Karışımların Hidrodealkilasyonuna Katalizör Modifikasyonun Etkisi

Promoter ile modifiye edilmiş Cr-Al2O3 yüzeyinde mezitilenin benzen, toluen ve ksilene hidrodealkilasyonu n-dekanın varlığında çalışılmıştır. Cr-Al2O3 katalizörünün aktivitesine ve stabilitesine, reaksiyon sıcaklığının, WHSV, krom impregnasyonunun tür ve miktarı ve V, Cs, Ni ve Mo gibi promoterların etkisi incelenmiştir. N-dekanın mezitilene eklenmesi, metil ve etil radikallerinin ortamda bulunmasıyla, Cr-Al2O3 katalizörünün hidrodealkilasyon aktivitesini artırdı. V ve Cs ile modifiye edilmiş katalizör (V-Cs-Cr-Al2O3), stabilite, ürün seçiciliği ve girdi dönüşümü için ticari Pyrotol (Houdry, USA) katalizörü ile karşılaştırılabilir performans gösterdi.

Effect of Catalyst Modification on Hydrodealkylation of Aromatic Mixtures

Hydrodealkylation of mesitylene in the presence of n-decane to benzene, toluene, and xylenes (BTX) over the promoted Cr-Al2O3 was studied. The effect of reaction temperature, WHSV, impregnation type, and amount of Cr and promoters such as V, Cs, Ni, and Mo on the stability and activıty of Cr-Al2O3 was investigated. The addition of n-decane to mesitylene accelerated the hydrodealkylation activity of Cr-Al2O3 because of the formation of methyl- and ethyl-radicals. The catalyst modified with V and Cs (V-Cs-Cr-Al2O3) has a comparable performance with the commercial catalyst Pyrotol (Houdry, USA) in terms of stability, product selectivity, and reactant conversions.

___

  • [1] www.oecd-ilibrary.org/energy/the-future-of-petrochemicals_9789264307414-en, The future of petrochemicals. OECD, (2018).
  • [2] Rezaei P.S., Shafaghat H., Daud W.M.A.W., “Production of green aromatics and olefins by catalytic cracking of oxygenate compounds derived from biomass pyrolysis: A review”. Appl. Catal. A Gen., 469: 490–511, (2014).
  • [3] Balasundram V., Ibrahim N., Kasmani R.M., Isha R., Hamid M.K.A. and Hasbullah H., “Catalytic upgrading of biomass-derived pyrolysis vapour over metal-modified HZSM-5 into BTX: a comprehensive review”, Biomass Convers. Biorefinery, 1-28, (2020).
  • [4] Xia Y., Bu T., Wang L., Zhu W., Yang X., Bao Q., et al., “Hydrodealkylation of trimethylbenzene over silicon-based catalyst”, Gaodeng Xuexiao Huaxue Xuebao/Chemical J. Chinese Univ., (2016).
  • [5] Kim T., Kim G.P., Jang J., Shim S.E., Ahn W.S. and Baeck S.H., “An investigation on the selective hydrodealkylation of C 9 + aromatics over alkali-treated Pt/H-ZSM-5 zeolites”, Catal. Sci. Technol., 14:1-10, (2016).
  • [6] Shin J., Oh Y., Choi Y., Lee J. and Lee J.K., “Design of selective hydrocracking catalysts for BTX production from diesel-boiling-range polycyclic aromatic hydrocarbons”, Appl. Catal. A Gen., 547:12–21, (2017).
  • [7] Oh Y., Shin J., Noh H., Kim C., Kim Y-S., Lee Y-K., et al., “Selective hydrotreating and hydrocracking of FCC light cycle oil into high-value light aromatic hydrocarbons”, Appl. Catal. A Gen., 577:86–98, (2019).
  • [8] Mohiuddin E., Mdleleni M.M. and Key D., “Catalytic cracking of naphtha: The effect of Fe and Cr impregnated ZSM-5 on olefin selectivity”, Appl. Petrochemical. Res., 8: 119–129, (2018).
  • [9] Litvishkov Y.N., Muradova P.A., Tret’yakov V.F., Zul’fugarova S.M., Talyshinskii R.M., Ilolov A.M. and et al., “Ni-Co-Cr/Al2O3/Al Catalysts with a Nanostructured Active Component: Microwave-Assisted Synthesis and Activity in the Reaction of Toluene Steam Dealkylation”, Pet. Chem., 59:546–551, (2019).
  • [10] Stummann M.Z., Høj M., Hansen A.B., Beato P., Wiwel P., Gabrielsen J. and et al., “Deactivation of a CoMo Catalyst during Catalytic Hydropyrolysis of Biomass. Part 1. Product Distribution and Composition”, Energy & Fuels, 33:12374–86, (2019).
  • [11] Zhang Y., Yang S., Lu J., Mei Y., He D. and Luo Y., “Effect of a Ce Promoter on Nonoxidative Dehydrogenation of Propane over the Commercial Cr/Al2O3 Catalyst”, Ind. Eng. Chem. Res., 58(43): 19818–19824, (2019).
  • [12] Goodman E.D., Johnston-Peck A..C, Dietze E.M., Wrasman C.J., Hoffman A.S., Abild-Pedersen F. and et al., “Catalyst deactivation via decomposition into single atoms and the role of metal loading”, Nat. Catal., 2:748–55, (2019).
  • [13] Yang F., Fang Y., Liu X., Liu X., Muir D., Maclennan A. and et al., “One-Step Alkylation of Benzene with Syngas over Non-Noble Catalysts Mixed with Modified HZSM-5”, Ind. Eng. Chem. Res., 58:13879–13888, (2019).
  • [14] Méndez-Mateos D., Barrio V.L., Requies J.M. and Cambra J.F., “A study of deactivation by H 2 S and regeneration of a Ni catalyst supported on Al 2 O 3 , during methanation of CO 2 . Effect of the promoters Co, Cr, Fe and Mo”, RSC Adv., 10:16551–16564, (2020).
  • [15] Nayebzadeh H., Saghatoleslami N. and Tabasizadeh M., “Optimization of the activity of KOH/calcium aluminate nanocatalyst for biodiesel production using response surface methodology”, J. Taiwan Inst. Chem. Eng. 68: 379-386, (2016).
  • [16] Zanjani N.G., Kamran-Pirzaman A. and Khalajzadeh M., “Synthesis of modified layered double hydroxide of MgAl catalyst with Ba and Li for the biodiesel production”, Clean Technol. Environ. Policy. 22:1173–1185, (2020).
  • [17] Qu T., Niu S., Zhang X., Han K. and Lu C., “Preparation of calcium modified Zn-Ce/Al2O3 heterogeneous catalyst for biodiesel production through transesterification of palm oil with methanol optimized by response surface methodology”, Fuel, 284:118986, (2021).
  • [18] Alibeyli R., Yeniova H., Koçak M.Ç. and Karaduman A., “Kinetic pecularities of benzene production from the benzene-toluene-xylene fraction of pyrolysis gasoline by catalytic hydrodealkylation at high temperature”, Pet. Sci. Technol., 21:789–803, (2003).
  • [19] Alibeyli R., Karaduman A., Yeniova H., Ateş A. and Bilgesü A.Y., “Development of a polyfunctional catalyst for benzene production from pyrolysis gasoline”. Appl. Catal. A Gen., 238:279–287, (2003).
  • [20] Chen Y., Wang K., Yang J.Y., Yuan P.Q., Cheng Z.M. and Yuan W.K., “Dealkylation of Aromatics in Subcritical and Supercritical Water: Involvement of Carbonium Mechanism”, Ind. Eng. Chem. Res., 55(36): 95-78-9585, (2016).
  • [21] Hsu C.S. and Robinson P.R., Cracking. Pet. Sci. Technol., Cham: Springer International Publishing, 211–44, (2019).
  • [22] Delahay G. and Duprez D., “Effects of dispersion and partial reduction on the catalytic properties of Rh Al2O3 catalysts in the steam reforming of mono- and bicyclic aromatics”, J. Catal., 115:542–50, (1989).
  • [23] Kim Y.S., Cho K.S., and Lee Y.K. “Morphology effect of β-zeolite supports for Ni 2 P catalysts on the hydrocracking of polycyclic aromatic hydrocarbons to benzene, toluene, and xylene”, J. Catal., 351:67–78, (2017).
  • [24] Roussel M., Norsic S., Lemberton J.L., Guisnet M., Cseri T. and Benazzi E., “Hydrocracking of n-decane on a bifunctional sulfided NiW/silica-alumina catalyst: Effect of the operating conditions”, Appl. Catal. A Gen., 279:53–58, (2005). [25] Abdi-Khanghah M., Adelizadeh M., Naserzadeh Z. and Zhang Z., “n -Decane hydro-conversion over bi- and tri-metallic Al-HMS catalyst in a mini-reactor”, Chinese J. Chem. Eng., 26:1330–1339,(2018).
  • [26] Qiu B., Yi X., Lin L., Fang W., and Wan H., “The hydrocracking of n-decane over bifunctional Ni-H3PW12O40/SiO2 catalysts”, Catal. Today, 131(1-4):464-471, (2008).
  • [27] Tsutsui T., Kubota O., Okada S., Sato K. and Takeuchi T., “A new hydrodealkylation process with fluid-beds to produce high purity naphthalene and methylnaphthalenes from heavy aromatic oils”, Catal. Today, 43:353–60, (1998).