Analysing mechanical behaviors of carbon fiber reinforced silicone matrix composite materials after static folding Malzemelerin Statik Katlama Sonrası Mekanik Davranışlarının Analiz Edilmesi

Subject of this paper is to provide information about mechanical behavior of a novel material to the literature: carbon fiber reinforced silicone matrix composite (CFRS-C). Under a mechanical load, silicone matrix allows large elastic deformations while carbon fiber reinforcement can bear high tensile stresses. This rare behavior of CFRS-C allows us to design foldable materials without being in a bind for mechanical hinges which bring additional weights. Foldable materials are used in space structures to gain advantage of smaller volumes. In this study, CFRS-C were manufactured with two different silicone type can be found in market and one type of plain woven carbon fiber fabric. Specimens were prepared and kept folded 90º statically in various periods of time. They were subjected to tensile testing afterwards, to investigate effect of number of layers, silicone type and duration of folding to mechanical behavior.

Karbon Fiber Takviyeli Silikon Matrisli Kompozit Malzemelerin Statik Katlama Sonrası Mekanik Davranışlarının Analiz Edilmesi

Bu makalenin konusu geleneksel malzemeler dışında bir malzeme olan karbon fiber takviyeli silikon matrisli kompozitlerin (KFTSK) mekanik davranışları hakkında literatüre bilgi sağlamaktır. Mekanik bir yük altında, silikon matris yüksek elastik deformasyonlara izin verirken, karbon fiber takviyeside yüksek çekme gerilmelerine dayanım sağlar. KFTS-K malzemelerinin sıradışı olan bu davranışı, bize ek ağırlığa sebep olan mekanik menteşelere bağımlı olmaksızın katlanabilir malzeme dizaynı sağlar. Katlanabilir malzemeler, daha küçük hacim avantajı sağladığı için uzay yapılarında kullanılmaktadır. Bu çalışmada, KFTS-K malzemeleri piyasada bulunabilen iki farklı silikon ve düz dokumalı çift yönlü karbon fiber kumaş ile üretilmiştir. Farklı tabaka sayılarına sahip numuneler hazırlanmış ve 90º katlanarak belli süreler boyunca statik olarak katlı bırakılmıştır. Sonrasında çekme testi uygulanarak tabaka sayısının, silikon türünün ve katlı kalma sürelerinin mekanik davranışlara etkisi incelenmiştir.

___

[1] Dano M.L., Gendron G., Picard A., Mechanical Behavior of a Triaxial Woven Fabric Composite, Mechanics of Composite Materials and Structures, 7: 207-224, (2000).

[2] Benarcyk B.A., Arnold S.M., ‘’Micromechanics-Based Modeling of Woven Polymer Matrix Composites’’, AIAA Journal, 41(9): 1788-1796, (2003)

[3] Le Page, B.H., Guild, F.J., Ogin, S.L. and Smith, P.A., ‘’Finite Element Simulation of Woven Fabric Composites’’, Composites: Part A, 35: 861 - 872, (2004).

[4] Hackett, R.M., ‘’Finite Elasticity’’, Hyperelasticity Primer, Springer International Publishing, USA, (2016)

[5] Manuel J. Garcia R., Oscar E. Ruiz S., Carlos Lopez, "Hyperelastic Material Modeling", Technical Report, Laboratorio CAD/CAM/CAE, Departamento de Ingenieria Mecanica, Universidad EAFIT, Medellin, (2005).

[6] T. W. Murphey, T. Meink, and M. M. Mikulas, ‘’Some micromechanics considerations of the folding of rigidizable composite materials’’ In 42nd AIAA/ASME/ ASCE / AHS / ASC Structures, Structural Dynamics, and Materials Conference, AIAA:2001-1418, (2001).

[7] W. H. Francis, M.S. Lake, and J. Steven Mayes, ‘’A review of classical _ber microbuckling analytical solutions for use with elastic memory composites’’, In 47th AIAA/ASME/ASCE/AHS/ASC Structures, Structural Dynamics, and Materials Conference, Newport, RI ,AIAA-2006:1764, (2006).

[8] Lopez Jimenez, F., ‘’Mechanics of thin carbon fiber composites with a silicone matrix’’, Doctoral dissertation, California Institute of Technology, (2011).

[9] Baier, H., L. Datashvili, and J. Hoffmann. "Mechanically reconfigurable and massively shape morphing space structures." Proceedings of the 11th European Spacecraft Structures, Materials and Mechanical Testing Conference, (2009).

[10] Murphey, T. W., ‘’Large Strain Composite Materials in Deployable Space Structures’’ In 17th International Conference on Composite Materials(Vol. 28). Edinburgh, UK: The British Composites Soc., (2009)

[11] Campbell, D., Lake, M.S. and Mallick, K., "A study of the bending mechanics of elastic memory composites." In AIAA. 45th Structures, Structural Dynamics, and Materials Conference. California: Palm Springs: 1323- 1331, (2004).

[12] Datashvili, L., Baier, H., Wehrle, E., Kuhn, T., & Hoffmann, J.’’ Large shell-membrane space reflectors’’ In Proceedings of AIAA Structures, Dynamics, and Materials Conference, Honolulu, Hawaii, (2010).

[13] ‘’Tembo Deployable Structures’’: https://www.ctdmaterials.com/engineered-materials/tembo/ (accessed July 2018).

[14] Vocke III, R.D., Kothera, C.S., Woods, B.K., Bubert, E.A. and Wereley, N.M.,’’One dimensional morphing structures for advanced aircraft’’ In Recent Advances in Aircraft Technology. IntechOpen, (2012).

[15] Guynn, E.G., Bradley, W.L. and Ochoa, O.O., ‘’A parametric study of variables that affect fiber microbuckling initiation in composite laminates: Part 2— Experiments’’ Journal of Composite Materials, 26(11): 1617-1643, (1992).

[16] Drapier, S., Gardin, C., Grandidier, J.C. and Potier-Ferry, M., ‘’Structure effect and microbuckling’’ Composites Science and Technology, 56(7): 861-867, (1996).

[17] Drapier, S., Grandidier, J.C. and Potier-Ferry, M., ‘’A structural approach of plastic microbuckling in long fibre composites: comparison with theoretical and experimental results’’ International Journal of Solids and Structures, 38(22-23): 3877-3904, (2001).

[18] Francis, W., Lake, M. and Mayes, J.S., ‘’A review of classical fiber microbuckling analytical solutions for use with elastic memory composites’’ In 47th AIAA/ASME/ASCE/AHS/ASC Structures, Structural Dynamics, and Materials Conference 14th AIAA/ASME/AHS Adaptive Structures Conference 7th:1764 , (2006).

[19] Marissen, R., and H. R. Brouwer. "The significance of fibre microbuckling for the flexural strength of a composite" Composites Science and Technology 59:3 (1999): 327-330, (1999).

[20] Composites World. ‘’Advances in sizings and surface treatments for carbon fibers.’’. compositeworld.com: https://www.compositesworld.com/articles/advances-insizings-and-surface-treatments-for-carbon-fibers.’’ (accessed May 2018).

[21] Wu, Zhihong, Charles U. Pittman Jr, and Steven D. Gardner. "Nitric acid oxidation of carbon fibers and the effects of subsequent treatment in refluxing aqueous NaOH." Carbon33, 5: 597-605, (1995).

[22] Mejia-Ariza, J., Guidanean, K., Murphey, T. and Biskner, A., "Mechanical characterization of L'Garde elastomeric resin composite materials." In 51st AIAA/ASME/ ASCE/AHS/ASC Structures, Structural Dynamics, and Materials Conference 18th AIAA/ASME/AHS Adaptive Structures Conference 12th: 2701, (2010).

[23] Jiménez, F.L. and Pellegrino, S., "Folding of fiber composites with a hyperelastic matrix." International Journal of Solids and Structures, 49(3-4): 395-407, (2012).

[24] Maqueda I, Pellegrino S, Mejia-Ariza J. "Characterization of a high strain composite material." In 53rd AIAA/ASME/ASCE/AHS/ASC Structures, Structural Dynamics and Materials Conference 20th AIAA/ASME/AHS Adaptive Structures Conference 14th AIAA, p. 1909.(2012).
Politeknik Dergisi-Cover
  • ISSN: 1302-0900
  • Yayın Aralığı: Yılda 4 Sayı
  • Başlangıç: 1998
  • Yayıncı: GAZİ ÜNİVERSİTESİ