Sezgiye Ters Fizik Soruları ve Bu Soruların Öğrenci Başarısına Etkisi

Öğrencilerin dersin içeriğine karşı ilgilerini ve meraklarını uyandırmanın bir yolu da derste sezgiye ters sorular kullanmaktır. Sezgiye ters fizik soruları, cevapları öğrencilerin beklediklerinden ya da tahmin ettiklerinden çok farklı olan soru çeşitleridir. Bu araştırmada, lise seviyesinde verilen fizik derslerinde sezgiye ters fizik sorularının kullanılmasının öğrenci başarısına etkisi incelenmiştir. Bu deneysel çalışmada, kontrol gruplu ön test-son test modeli kullanılmıştır. Tesadüfî örneklem yoluyla belirlenmiş üç öğrenci grubu ile yapılan bu araştırma, 2008-2009 eğitim öğretim yılında Özbekistan'da uluslararası bir okulda yapılmıştır. Altı haftalık uygulama süresinde bir deney ve iki kontrol grubu olmak üzere toplam 48 öğrenci ile çalışılmıştır. Araştırmada, sezgiye ters fizik soruları eşliğinde ders anlatımı ve geleneksel öğretim yöntemleri kullanılmıştır. Bu çalışma için, Newton'un Hareket Kanunları konusu ile ilgili başarı testi (Cronbach's Alpha =.88) ve sezgiye ters fizik sorular geliştirilmiştir. Gruplar, son testten toplanan verilerle karşılaştırılmıştır. Sezgiye ters fizik soruları eşliğinde yürütülen derslerin daha fazla ilgi çektiği ve öğrenci başarısını artırmada etkili olduğu görülmüştür

Counterintuitive Physics Questions and Their Effect on Student Achievement

One way to arouse student interest and curiosity about course content is to enable students come across with counterintuitive problems. Counterintuitive physics problems (CIP) are those that yield solutions away from students' expectations or away from students' predictions. This research has investigated the effects of CIP questions on physics achievement at high school level. In this experimental study, pretest-posttest design, with control group, was used. The research, in which three randomly defined groups of student participated, was performed at an International School in Uzbekistan. During the 6-week study with 48 students, one group received the strategy instruction while the other two groups acted as control groups. In this study, teaching with CIP questions and traditional instruction methods were used. At the beginning of the research, a physics achievement test (Cronbach's Alpha = .88) and counterintuitive physics problems related to Newton's laws were developed. Groups were compared with the data gathered by post-tests. The lessons carried out along with CIP questions have been found more interesting and was more effective on physics achievement

___

  • Balta, N. & Eryılmaz, A. (2015). Counterintuitive dynamics test. International Journal of Science and Mathematics Education. Advance online publication. doi: 10.1007/s10763-015-9694-6
  • Balta, N. & Moğol, S. (2008, August). Kritik düşünme gerektiren fizik soruları ve bunların uygulamaları üzerine bir çalışma [Counterintuitive physics problems and the effect of these problems on student success]. Paper presented at the VIII National Science and Mathematics Educational Congress, Bolu, Turkey.
  • Campanario, J. M. (1998). Using counterintuitive problems in teaching physics. The Physics Teacher, 36, 439-441.
  • Everett, L. J. & Elsa, Q. V. (2005). Increasing success in a dynamics course through multi-intelligence methods and peer facilitation, ASEE Conference, Session 1526, Portland
  • Everett, L. J. & Villa, E. (2006). Assessment results of multi-intelligence methods used in Dynamics. Retrieved April 07, 2014, from http://digitalcommons.utep.edu/mech_ind_papers/16/
  • Everett, L. J. & Pennathur, A. (2007, June). A design process for conceptually based, counterintuitive problems. Paper presented at the national conference of the ASEE, Honolulu, Hawaii.
  • Fraenkel, J. R. & Wallen, N. E. (1996). How to design and evaluate research in education (6th ed.). New York, NY: McGraw-Hill.
  • Hake, R. (1998). Interactive-engagement vs. traditional methods: A six-thousand-student survey of mechanics test data for introductory physics courses. American Journal of Physics, 66, 64-74.
  • Hewson, M. G. & Hewson, P. W. (1983). Effect of instruction using students' prior knowledge and conceptual change strategies on science learning. Journal of Research in Science Teaching, 20(8), 731-743.
  • Hestenes, D., Wells, M. & Swackhammer, G. (1992). Force concept inventory. The Physics Teacher, 30, 141-158.
  • Hynd, C. R., McNish, M. M., Qian, G., Keith, M., & Lay, K. (1994). Learning counterintuitive physics concepts: The effects of text and educational environment (National Reading Research Center Report No. 16). Retrieved from August 15, 2015, http://www.eric.ed.gov/PDFS/ED374404.pdf
  • Giancoli, D. C. (2005). Physics: principles with applications. Pearson Education.
  • Gordon, M. (1991). Counterintuitive instances encourage mathematical thinking. Mathematics Teacher, 84(7), 511-15.
  • Kaiser, M. K., Jonides, J. & Alexander, J. (1986). Intuitive reasoning about abstract and familiar physics problems. Memory & Cognition, 14(4), 308-312.
  • Klopfer, L. E., Champagne, A. B. & Gunstone, R. F. (1983). Naive knowledge and science learning. Research in Science & Technological Education, 1(2), 173-183.
  • Mazur, E. (1997). Peer Instruction: A User's Manual, Prentice Hall, Upper Saddle River, NJ.
  • Pfundt, H. & Duit, R. (1991). Students' Alternative Frameworks and Science Education. Bibliography. Kiel, Germany: Institute for science education. Ek