Üç boyutlu ve iki boyutlu eleman tiplerinin punta kaynaklı bileşenlerin gerilme ve ömür analizleri üzerindeki etkisi

Sonlu eleman analizleri ve bilgisayar destekli mühendislik yöntemleri günümüz araştırma-geliştirme projelerinde anahtar role sahiptir. Model tipine göre eleman seçimi simülasyon doğruluğu için azami önem arz etmekte iken, bazı durumlarda geometrik koşullar araştırmacılar için bu seçimi zorlaştırabilmektedir. Bu makalenin amacı punta kaynaklı bileşenler için üç boyutlu kübik ve iki boyutlu dörtgen elemanlar kullanılması durumunda oluşan farklılıklar hakkında bilgi sunmaktır. Çalışma kapsamında iki puntalı kayma numuneleri farklı eleman tipleri ile modellenerek gerilme analizleri ve üç farklı dinamik yük koşulunda yüksek döngü yorulma simülasyonları gerçekleştirilmiştir. Analizler neticesinde deplasman, gerilme değerleri ve tensörleri, yüksek döngü bileşen ömürleri incelenmiş ve iki farklı eleman tipi ile oluşturulan modeller arasındaki ayrımlar raporlanmıştır. Simülasyon sonucunda elde edilen ömür değerleri, yüksek döngü yorulma test verileri ile karşılaştırılarak farklı tip elemanlar için doğruluk derecelendirme çalışmaları tamamlanmıştır. Makale kapsamında gerçekleştirilen çalışmalar neticesinde kaynak bölgesinde rijit elemanlar ile eşleştirilen iki boyutlu dörtgen eleman modelleme yönteminin, üç boyutlu kübik eleman ile modellemeye nazaran yorulma testleri ile daha uyumlu sonuçlar verdiği gözlemlenmiştir. Havacılık, otomotiv ve deniz sektöründe fazlaca uygulanan punta kaynak yönteminin yüksek döngü yorulma testleri ile doğrulanmış sonlu eleman analizlerinin modelleme prosedürü de çalışmada detaylandırılmıştır.

Effect of 3 dimensional and 2 dimensional element types on stress and life analysis of spot-welded components

Finite element analysis and computer-aided engineering methods have an essential role in modern research and development projects. Although proper element selection for the modeling type is critical for the accuracy of simulations, the selection process might be difficult for researchers in some cases where geometric conditions are challenging. The main objective of this paper is to present the differences in simulation results when three-dimensional cubic and two-dimensional quadrilateral elements are used for the modeling of spot-welded components. Following the modeling of shear specimens having two spot welds with different element types, static analysis, and high cycle fatigue simulations at three different dynamic load cases have been run within the context of this study. Displacement, stress values and tensors, as well as high cycle fatigue life have been evaluated as the output of analysis, and deviations due to different element types have been reported. Accuracy levels of different element types have been determined by comparing the life obtained by simulations with high cycle fatigue tests. The studies conducted within the content of this paper indicate that the rigid spot weld modeling with two dimensional quadrilateral elements give better consistency with the fatigue tests in comparison with the modeling with three dimensional cubical elements. The modeling procedures of correlated high cycle fatigue simulations have been detailed for spot welding, which is one of the most applied methods in aviation, automotive and marine industry.

___

  • [1] Romeed SA, Fok SL, Wilson NHF. “A Comparison of 2D and 3D finite element analysis of a restored tooth”. Journal of Oral Rehabilitation, 2006. https://doi.org/10.1111/j.1365-2842.2005.01552.x
  • [2] Chanthasopeephan T, Desai JP, Lau ACW. “3D and 2D finite element analysis in soft tissue cutting for haptic display”. ICAR '05. Proceedings. 12th International Conference on Advanced Robotics, Seattle, WA, USA, 18-20 July 2005.
  • [3] Koktan J, Cajka R, Brozovsky J. “Comparison of 2D and 3D finite element structural analysis of foundation slab on elastic half-space”. ARPN Journal of Engineering and Applied Sciences, 14(6), 1112-1119, 2019.
  • [4] Ata TT. 2D and 3D Finite Element Analyses of Dynamic Delamination in Curved CFRP Laminates. MSc Thesis, Middle East Technical University, Ankara, Turkey, 2019.
  • [5] Duboust N, Pinna C, Ghadbeigi H, Avyar SS, Phadnis VA, Collis A, Kerrigan K. “2D and 3D finite element models for the edge trimming of CFRP”. 16th CIRP Conference on Modeling of Machining Operations, Procedia CIRP 58, Cluny, France, 15-16 June 2017.
  • [6] Saleem J, Majid A, Bertilsson K, Carldberg T. “3-dimensional finite element simulation of seam welding process”. Elektronik IR Elektrotechnika, 19(8), 73-78, 2013.
  • [7] Nielsen CV, Chergui A, Zhang W. “Single-sided shet-to-tube welding investigated by 3D Numerical Simulations”. 7th International Seminar on Advances in Resistance Welding, Busan, Korea Republic, 12-14 September 2012.
  • [8] Dincer S, Çınar A, Dursun AK, Asureciler B, Duran ET, Mugan A. “A comparative study on the finite element models for spot welds and their verification”. SAE Technical Paper Series, 2006-01-0590, SAE World Congress, Detroit, Michigan, 3-6 April 2006.
  • [9] Wagare V. Fatigue Life Prediction Of Spot-Welded Joints: A Review. Editors: Chaari F, Gherardini F, Ivanov V, Lecture Notes in Mechanical Engineering, 445-455, Singapore, Springer, 2018.
  • [10] Kang HT, Dong P, Hong JK, “Fatigue analysis of spot welds using a mesh-insensitive structural stress approach”. International Journal of Fatigue, 29, 1546-1553, 2007.
  • [11] Radaj D. “Local fatigue strength characteristic values for spot welded joints”. Engineering Fracture Mechanics, 37(1), 245-250, 1990.
  • [12] Rupp A, Störzel K, Grubisic V. “Computer aided dimensioning of spot-welded automotive structures”. SAE Technical Paper Series, 950711, International Congress and Exposition, Detroit, Michigan, 27 February-2 March 1995.
  • [13] Deng X, Chen W. “Performance of shell elements in modeling spot-welded joints”. Finite Elements in Analysis and Design, 35(1), 41-57, 2000.
  • [14] Palmodella M, Friswell MI, Mottershead JE, Lees AW. “Finite element models of spot welds in structural dynamics: Review and updating”. Computers and Structures, 83(8-9), 648-661, 2005.
  • [15] Nielsen CV, Zhang W, Perret W, Martins PAF, Bay N. “Three-dimensional simulations of resistance spot welding”. Journal of Automobile Engineering, 229(7), 885-897, 2015.
  • [16] Patil S. Modeling and Chracaterization of Spot Weld Material Configurations for Vehicle Crash Analysis. PhD Thesis, Wichita State University, Kansas, USA, 2014.
  • [17] Shafiq ASRT. Modeling of spot Weld with Failure for Crash Simulations. MSc Thesis, Chalmers University of Technology, Göteborg, Sweden, 2017.
  • [18] Husain NA, Khodaparast HH, Snaylam A, James S, Dearden G, Ouyang H. “Finite element modeling and updating of laser spot weld joints in a top hat structure for dynamic analyses”. Proceedings of the Institution of Mechanical Engineers, Part C: Journal of Mechanical Engineering Science, JMES1787, 224(4), 851-861, 2009.
  • [19] Dang W. Finite element modeling of hybrid (Spot welded/bonded) joints under service conditions. PhD Thesis, Universite de Technologie De Compiegne, Compiègne, France, 2015.
  • [20] Khan Q, Armaki HG, Gill AS, Zilincik S, Gawade A. “Characterization and modeling of spot-weld joints with *Mat_100_DA parameter optimization using LS-OPT, and 3 sheet spot-weld modeling method development in LS-Dyna”. 15th International LS-DYNA User Conference, Dearborn, MI, USA, 10-12 June 2018.
  • [21] Hıdıroğlu M, Kahraman U, Kahraman N. “The effect of AC and MFDC resistance spot welding technology on mechanical properties of new generation automotive steels”. Pamukkale University Journal of Engineering Sciences, 27(4), 465-471, 2021.
  • [22] Yang L, Yang B, Yang G, Xiao S, Zhu T, Wang F. “A comparative study of fatigue estimation methods for single-spot and multispot welds”. Fatigue & Fracture of Engineering Materials & Structures, 43(6), 1142-1158, 2020.