Grafen tabanlı çift katmanlı yapının ekranlama etkinliği üzerine parametrik çalışma

Bu çalışmada elektromanyetik ekranların ekranlama etkinliğini grafen plakayla kaplayarak artırmak amaçlanmıştır. Öncelikle tek katmanlı grafen nümerik olarak modellenmiş ve analitik bulgularla uyumlu olduğu görülmüştür. Sonra, bir alüminyum levhanın arka yüzeyine grafen plaka kaplanarak oluşturulan çift katmanlı ekranın yansıma kaybı analitik ve nümerik olarak analiz edilmiştir. Son olarak, iç yüzeyleri grafen plaka kaplı bir ekranlama kutusu modellenmiş olup, grafen plakanın kimyasal potansiyel ve sıcaklık değerlerine göre ekranlama kutusunun ekranlama etkinliğinin değişimi incelenmiştir. Sıcaklık parametresi sabit kalıp, grafen plakanın kimyasal potansiyeli artırıldığında, ekranlama kutusunun ekranlama etkinliğinin azaldığı elde edilmiştir. Kimyasal potansiyel sabit kalıp, grafen plakanın sıcaklık parametresi artırıldığında ise 300 K ve üzeri sıcaklıklarda ekranlama etkinliği değerleri birbirine yakın olarak elde edilmiştir.

Parametric study on shielding effectiveness of graphene based bilayer structure

In this study, it is aimed to increase shielding effectiveness of electromagnetic shields by coating with graphene sheet. Firstly, graphene monolayer is modeled numerically and it is observed that it is in good agreement with the analytical findings. Then, the reflection loss of bilayer screen that is formed by coating the back surface of an aluminum plate with graphene sheet, is analyzed analytically and numerically. Finally, a shielding enclosure in which inner surfaces are coated with graphene sheet is modeled and the change of shielding effectiveness of the shielding enclosure with respect to the chemical potential and temperature values of graphene sheet is investigated. It is obtained that shielding effectiveness of shielding enclosure decays depending on the increase of chemical potential of graphene sheet while the temperature parameter remains fixed. Shielding effectiveness values are obtained close to each other at the temperature 300 K and above depending on the increase of temperature of graphene sheet while the chemical potential remains fixed.

___

  • [1] Güler S, Yenikaya S, Yılmaz G. “Elektronik ekipman koruyucu kutusunun ekranlama etkinliği analizi”. Uludağ Üniversitesi Mühendislik Fakültesi Dergisi, 25(3), 1445-1458, 2020.
  • [2] Güler S, Yenikaya S. “Analysis of shielding effectiveness by optimizing aperture dimensions of a rectangular enclosure with genetic algorithm”. Turkish Journal of Electrical Engineering & Computer Sciences, 29(2), 1015-1028, 2021.
  • [3] Obreja AC, Iordanescu S, Gavrila R, Dinescu A, Comanescu, F, Matei A, Danila M, Dragoman M, Iovu H. “Flexible films based on graphene/polymer nanocomposite with improved electromagnetic interference shielding”. International Semiconductor Conference (CAS), Sinaia, Romania, 12-14 October 2015.
  • [4] Geim AK, Novoselov KS. “The rise of graphene”. Nature Materials, 6, 183-191, 2007.
  • [5] Zhu Y, Murali S, Cai W, Li X, Suk JW, Potts JR, Ruoff RS. “Graphene and graphene oxide: Synthesis, properties, and applications”. Advanced Materials, 22(35), 3906-3924, 2010.
  • [6] Altun M, Karteri İ, Güneş M. “A study on EMI shielding effectiveness of graphene based structure”. International Artificial Intelligence and Data Processing Symposium (IDAP), Malatya, Turkey, 16-17 September 2017.
  • [7] Chen J, Guo J, Tian C. “Analyzing the shielding effectiveness of a graphene-coated shielding sheet by using the HIEFDTD method”. IEEE Transactions on Electromagnetic Compatibility, 60(2), 362-367, 2018.
  • [8] Lovat, G. “Equivalent circuit for electromagnetic intersection and transmission through graphene sheets”. IEEE Transactions on Electromagnetic Compatibility, 54(1), 101-109, 2012.
  • [9] Dejband E, Karami H, Hosseini M. “Tunable electromagnetic interference shield using periodic graphene-based structures in the terahertz regime”. International Conference on Circuits, Devices and Systems (ICCDS). Chengdu, China, 5-6 September 2017.
  • [10] D'Aloia AG, D'Amore M, Sarto MS. “Low-terahertz modeling of graphene/dielectric multilayers using an equivalent single layer in reverberation environment”. IEEE Transactions on Electromagnetic Compatibility, 60(4), 849-857, 2018.
  • [11] Cruciani S, Feliziani M, Maradei F. “Prediction of shielding effectiveness in graphene enclosures by FEM-INBC method”. T. Asia-Pacific International Symposium on Electromagnetic Compatibility. Taipei, Taiwan, 26-29 May 2015.
  • [12] Chhetri S, Samanta P, Murmu NC, Srivastava SK, Kuila T. “Electromagnetic interference shielding and thermal properties of non-covantly functionalized reduced graphene oxide/epoxy composites”. AIMS Material Science, 4(1), 61-74, 2016.
  • [13] Abdulla R, Delihasanlar E, Abdulla FGK, Yuzer AH. “Electromagnetic shielding characterization of conductive knitted fabrics”. Progress In Electromagnetics Research M, 56, 33-41, 2017.
  • [14] Eswaraiah V, Sankaranarayanan V, Mishra AK, Ramaprabhu S. “Electromagnetic interference (EMI) shielding of carbon nanostrcutured films”. ICCCE International Conference on Chemistry and Chemical Engineering, Proceedings. Kyoto, Japan, 1-3 August 2010.
  • [15] D'Aloia AG, D'Amore M, Sarto MS. “Terahertz shielding effectiveness of graphene-based multilayer screens controlled by electric field bias in a reverberating environment”. IEEE Transactions on Terahertz Science and Technology, 5(4), 628-636, 2015.
  • [16] Bozzi M, Pierantoni L, Bellucci S. “Application of graphene at microwave frequencies”. Radioengineering, 24(3), 661-669, 2015.
  • [17] Ott HW. “Electromagnetic compatibility Engineering”. New Jersey, John Wiley & Sons, 2009.
  • [18] Lee, YS, Malek Y, Cheng EM, Liu W, You KY, Wee FH, Zahid L, Rahim A. “Single layer microwave absorber based on rice husk-MWCNTs composites”. ARPN Journal of Engineering and Applied Sciences, 11(14), 8932-8937, 2016.
  • [19] Güler S, Yenikaya S. “Analysing the shielding effectiveness of graphene sheet coated rectangular enclosure”. Electromagnetics, 41(7), 469-485, 2021.
  • [20] Wang D, Zhao WS, Gu X, Chen W, Yin WY. “Wideband modeling of graphene-based structures at different temperatures using hybrid FDTD method”. IEEE Transactions on Nanotechnology, 14(2), 250-258, 2015.
  • [21] Wang R, Raju S, Chan M, Jiang LJ. “Low frequency behavior of CVD graphene from DC to 40 GHz”. Progress in Electromagnetics Research C, 71, 1-7, 2017.