TCP/IP ve OSI modeli öğretimi için etkileşimli artırılmış gerçeklik ortamı geliştirme

Artırılmış Gerçeklik (AR), sanal içeriklerin gerçek dünya ile sorunsuz bir şekilde bütünleşmesine olanak tanıyan, akıllı telefon, tablet gibi el tipi görüntüleyiciler veya ön kameraya sahip VR başlıklar aracılığı ile görüntülenen bir teknolojidir. Bu teknolojinin en önemli özelliği soyut kavramları görselleştirmesidir. Birçok çalışma, TCP/IP ve OSI modellerinin, ayrıntılı soyut kavramlar ve protokoller içermesi nedeniyle veri iletişimlerinin son derece karmaşık olduğunu bildirmektedir. Farklı sistemleri birbirine bağlamak, iki uç nokta arasında veri akışı oluşturmak ve katmanlar arasında veri dönüşümleri yapmak bu karmaşıklıklardan sadece birkaçıdır. Bu çalışmada, TCP/IP ve OSI modelleri gibi öğrenilmesi zor olan soyut kavramların öğretiminde AR ortamların çözüm olup olmadığının belirlenmesine yönelik bir araştırma yürütülmüştür. Amaç, öğrencilerin TCP/IP ve OSI gibi kavramların temel bilgilerini öğrenebilecek ve ağ deneyimlerini iyileştirebilecek bir AR ağ tasarım ortamı geliştirmektir. Bu ortam, ağ düğümlerin zekice davrandığı ve IP adreslerin dinamik yönetildiği yeni bir oyun temelli mobil eğitim yöntemini temel almaktadır. Bu sayede kullanıcılar TCP/IP ve OSI modellerinin soyut kavramlarını mobil AR başlığı ile her yerde 3B, etkileşimli ve uygulamalı öğrenme fırsatı bulmuştur. Deneysel sonuçlar, somut arayüz etkileşimlerinin ve AR ortamların öğrenciler için faydalı bir öğretim aracı olduğunu göstermiştir.

Augmented Reality (AR) is a technology that allows virtual content to be seamlessly integrated with the real world, viewed via handheld viewers such as smartphones, tablets, or VR headsets with a front camera. The most important feature of this technology is that it visualizes abstract concepts. Many studies report that data communications are extremely complex because TCP/IP and OSI models contain elaborate abstract concepts and protocols. Connecting disparate systems, creating data flows between two endpoints, and performing data transformations between layers are just a few of these complexities. In this study, a research is conducted to determine whether AR environments are the solution for teaching abstract concepts that are difficult to learn such as TCP/IP and OSI models. The aim is to develop an AR network design environment in which students can learn the basics of concepts such as TCP/IP and OSI and improve their network experience. This environment is based on a new gamebased mobile training method in which network nodes behave intelligently and IP addresses are dynamically managed. In this way, users have the opportunity to learn the abstract concepts of TCP/IP and OSI models in 3D, interactive and hands-on with the mobile AR headset anywhere. Experimental results have shown that concrete interface interactions and AR environments are useful teaching tools for students.

___

  • [1] Çölkesen R. Algoritma Geliştirme ve Veri Yapıları. 3 baskı. İstanbul, Türkiye, Papatya Yayıncılık, 2016.
  • [2] Tuma T, Fajfar, I, Perko M, Bratkovič F, Puhan J. “A handson approach to teaching the basic OSI reference model”. International Journal of Electrical Engineering Education, 37(2), 157-166, 2000.
  • [3] Ruiz Martinez A, Pereniguez Garcia F, Marin Lopez R, Ruiz Martinez P M, Skarmeta Gomez AF. “Teaching advanced concepts in computer networks: VNUML-UM virtualization tool”. IEEE Transactions on Learning Technologies, 6(1), 85-96, 2013.
  • [4] Gullu H, Delialioglu O. “The effect of computer network simulators on students’ motivation and learning”. Journal of Learning and Teaching in Digital Age, 3(2), 12-21, 2018.
  • [5] Cowling M, Birt JR. “Piloting mixed reality in ICT networking to visualize complex theoretical multi-step problems”. Show Me The Learning: ASCILITE 2016 Innovation, Practice and Research in the Use of Educational Technologies in Tertiary Education Conference, Adelaide, Australia, 27-30 November 2016.
  • [6] Breslau L, Estrin D, Fall K, Floyd S, Heidemann J, Helmy A, Huang P, McCanne S, Varadhan K, Xu Y, Yu H. "Advances in network simulation". Computer, 33(5), 59-67, 2000.
  • [7] Goodall JR, Mansmann F, Gerth J. “Computer network visualization”. IEEE Network, 26(6), 4-5, 2012.
  • [8] Marquardson J, Gomillion DL. “Simulation for network education: Transferring networking skills between simulated to physical environments”. Information Systems Education Journal, 17(1), 28-39, 2019.
  • [9] Varinlioğlu G, Alankuş G, Aslankan A, Mura G. “Oyun tabanlı öğrenme ile dijital mirasın yaygınlaştırılması”. ODTÜ Mimarlık Fakültesi Dergisi, 36(1), 23-40, 2019.
  • [10] Donchyts G, Baart F, Van Dam A, Jagers B. “Benefits of the use of natural user interfaces in water simulations”. Seventh Environmental Modelling and Software Conference, San Diego, California, USA, 15-19 June 2014.
  • [11] Dube TJ, İnce G. “A novel interface for generating choreography based on augmented reality”. International Journal of Human-Computer Studies, 132, 12-24, 2019.
  • [12] Billinghurst M, Kato H, Myojin S. “Advanced interaction techniques for augmented reality applications”. Third Virtual and Mixed Reality Conference, San Diego, USA, 19-24 July 2009.
  • [13] Carmigniani J, Furht B, Anisetti M, Ceravolo P, Damiani E, Ivkovic M. “Augmented reality technologies, systems and applications”. Multimedia Tools and Applications, 51(1), 341-377, 2011.
  • [14] Statista Inc. “Augmented reality market size worldwide 2017-2025”. https://www.statista.com/statistics/897587/worldaugmented-reality-market-value/ (07.03.2021).
  • [15] Fraga AL, Gramajo MG, Trejo F, Garcia S, Juarez G, Franco L. “Poster: SIMNET: Simulation-based exercises for computer network curriculum through gamification and augmented reality”. Remote Engineering and Virtual Instrumentation Conference, Duesseldorf, Germany, 21-23 March 2018.
  • [16] Wen Y, Zhang W, Wolski R, Chohan N. “Simulation-based augmented reality for sensor network development”. Fifth Embedded Networked Sensor Systems Conference, Sydney, Australia, 6-9 November 2007.
  • [17] Truchly P, Medvecký M, Podhradský P, Vančo M. “Virtual reality applications in STEM education”. Sixteenth Emerging eLearning Technologies and Applications Conference, Stary Smokovec, Slovakia, 15-16 November 2018.
  • [18] Sarkar N. Tools for Teaching Computer Networking and Hardware Concepts. 1st ed, Hershey, PA, Idea Group, Inc., 2005.
  • [19] Alse K, Ganesh L, Prasad P, Chang M, Iyer S. “Assessing students' conceptual knowledge of computer networks in open wonderland”. IEEE Sixteenth Advanced Learning Technologies Conference, Austin, USA, 25-28 July 2016.
  • [20] Wang Z, Guo J. “A Journey from end systems to backbone routers: a virtual lab environment for online computer networking courses”. ASEE Virtual Annual Conference, Chico, USA, 19-26 July 2021.
  • [21] Montagud M, Boronat F. “Analysis, deployment, and evaluation of the use of network simulation as a learning resource”. IEEE Revista Iberoamericana de Tecnologias del Aprendizaje, 9(3), 82-90, 2014.
  • [22] Weingartner E, Vom Lehn H, Wehrle K. “A performance comparison of recent network simulators”. 2009 IEEE Communications Conference, Dresden, Germany, 14-18 June 2009.
  • [23] Walia AK, Chhabra A, Sharma D. Comparative Analysis of Contemporary Network Simulators. Editors: Raj JS, Kamel K, Lafata P. Innovative Data Communication Technologies and Application, 369-383, Singapore, Springer, 2022.
  • [24] Bakare BI, Enoch JD. “A review of simulation techniques for some wireless communication system”. International Journal of Electronics Communication and Computer Engineering, 10(2), 60-70, 2019.
  • [25] Makasiranondh W, Maj SP, Veal D. “Pedagogical evaluation of simulation tools usage in network technology education”. World Transactions on Engineering and Technology Education, 8(3), 321-326, 2010.
  • [26] Hamzah ML, Rizal F, Simatupang W. “Development of augmented reality application for learning computer network device”. International Journal of Interactive Mobile Technologies, 15(12), 47-64, 2021.
  • [27] Taçgin Z, Uluçay N, Özüağ E. “Designing and developing an augmented reality application: A sample of chemistry education”. Journal of the Turkish Chemical Society, Section C: Chemical Education, 1(1), 147-164, 2016.
  • [28] Küçük S, Kapakin S, Göktaş Y. “Tıp fakültesi öğrencilerinin mobil artırılmış gerçeklikle anatomi öğrenimine yönelik görüşleri”. Yükseköğretim ve Bilim Dergisi, (3), 316-323, 2015.
  • [29] Billinghurst M. “Augmented reality in education”. New Horizons for Learning, 12(5), 1-5, 2002.
  • [30] da Silva BR, Zuchi JH, Vicente LK, Rauta LRP, Nunes MB, Pancracio VAS, Junior WB. “AR Lab: Augmented reality app for chemistry education”. Twenty forth International Congress of Educational Informatics, Arequipa, Peru, 26-28 November 2019.
  • [31] Cai S, Wang X, Chiang FK. “A case study of Augmented Reality simulation system application in a chemistry course”. Computers in Human Behavior, 37, 31-40, 2014.
  • [32] Daineko Y, Ipalakova M, Tsoy D, Bolatov Z, Baurzhan Z, Yelgondy Y. “Augmented and virtual reality for physics: Experience of Kazakhstan secondary educational institutions”. Computer Applications in Engineering Education, 28(5), 1220-1231, 2020.
  • [33] Xiao M, Feng Z, Yang X, Xu T, Guo Q. “Multimodal interaction design and application in augmented reality for chemical experiment”. Virtual Reality & Intelligent Hardware, 2(4), 291-304, 2020.
  • [34] İçten T. “Trafik güvenliği kurallarının ve işaretlerinin eğitimi için etkileşimli 3B sanal ortam”. Bilişim Teknolojileri Dergisi, 14(2), 191-206, 2021.
  • [35] Azuma RT. “A Survey of augmented reality”. Teleoperatorsand Virtual Environments, 6(4), 355-385, 1997.
  • [36] İçten T, Bal G. “Artırılmış gerçeklik teknolojisi üzerine yapılan akademik çalışmaların içerik analizi”. Bilişim Teknolojileri Dergisi, 10 (4), 401-415, 2017.
  • [37] İçten T. Artırılmış Gerçeklik İçerik Geliştirme ve Tarayıcı Platformu Tasarımı, Uygulaması ve Değerlendirilmesi. Doktora Tezi, Gazi Üniversitesi, Ankara, Türkiye, 2019.
  • [38] İçten T, Bal G. “Artırılmış gerçeklik üzerine son gelişmelerin ve uygulamaların incelenmesi”. Gazi Üniversitesi Fen Bilimleri Dergisi Part C: Tasarım ve Teknoloji, 5(2), 111-136, 2017.
  • [39] Cheng KH, Tsai CC. “Affordances of augmented reality in science learning: Suggestions for future research”. Journal of Science Education and Technology, 22(4), 449-462, 2013.
  • [40] Wagner D, Reitmayr G, Mulloni A, Drummond T, Schmalstieg D. “Real-time detection and tracking for augmented reality on mobile phones”. IEEE transactions on visualization and computer graphics, 16(3), 355-368, 2009.
  • [41] Akbaş MF, Güngör C. “Arttırılmış gerçeklikte işaretçi tabanlı takip sistemleri üzerine bir literatür çalışması ve tasarlanan çok katmanlı işaretçi modeli”. Dokuz Eylül Üniversitesi Mühendislik Fakültesi Fen ve Mühendislik Dergisi, 19(56), 599-619, 2017.
  • [42] Ericson C. Real-Time Collision Detection. 1nd ed. New York, USA, CRC Press, 2004.
  • [43] Büyüköztürk Ş, Köklü N, Çokluk-Bökeoğlu Ö. Sosyal Bilimler için İstatistik. 7. baskı. Ankara, Türkiye, Pegem Akademi, 2011.
  • [44] Tabachnick BG, Fidell L S, Using Multivariate Statistics. 6th ed. United States, Pearson Education, Boston, 2013.
  • [45] Rodríguez FC, Dal Peraro M, Abriata LA. “Democratizing interactive, immersive experiences for science education with WebXR”. Nature Computational Science, 1(10), 631-632, 2021.
  • [46] Yoon HJ, Moon HS, Sung MS, Park SW, Heo H. “Effects of prolonged use of virtual reality smartphone-based headmounted display on visual parameters: a randomised controlled trial”. Scientific Reports, 11(1), 1-9, 2021.
  • [47] Turnbull PRK, Wong J, Feng J, Wang MTM, Craig JP. “Effect of virtual reality headset wear on the tear film: A randomised crossover study”. Contact Lens Anterior Eye, 42(6), 640-645, 2019.
  • [48] Dudley JJ, Benko H, Wigdor D, Kristensson PO. “Performance envelopes of virtual keyboard text input strategies in virtual reality”, ISMAR 2019 17th IEEE Mixed and Augmented Reality Symposium, Beijing, China, 14-18 October 2019.
  • [49] Hillmann C. Comparing the Gear VR, Oculus Go, and Oculus Quest. Editor: Hillmann C. Unreal for Mobile and Standalone VR, 141-167, Apress, Berkeley, CA, 2019.
  • [50] Bermejo C, Lee LH, Chojecki P, Przewozny D, Hui P. “Exploring button designs for mid-air interaction in virtual reality: A hexa-metric evaluation of key representations and multi-modal cues”. Proceedings of the ACM on Human-Computer Interaction, 5(EICS), 1-26, 2021.