Taşıyıcı hafif betonun enerji performansı açısından değerlendirilmesi: Bir örnek çalışma

Bu çalışmada, pomza agregası içeren taşıyıcı hafif beton üretilmesi ve taşıyıcı hafif betonun enerji performansı açısından değerlendirilmesi amaçlanmıştır. Hafif beton üretimlerinde uçucu kül ve metakaolin çimento ile ikame edilerek kullanılmıştır. Karşılaştırma yapmak amacıyla normal ağırlıklı geleneksel beton üretilmiştir. Üretilen betonların basınç dayanımı, birim hacim ağırlık ve ısı iletkenlik katsayıları ilgili standartlara uygun olarak belirlenmiştir. Üretilen hafif betonların birim hacim ağırlıkları 1880-1900 kg/m3 ve basınç dayanımları 20-27 MPa arasında değişmektedir. Betonların ısı iletkenlik katsayıları birim hacim ağırlıkları azaldıkça azalmış olduğu ve 0.54-1.0 W/mK arasında değerler aldığı görülmektedir. Üretilen betonların belirlenen özellikleri örnek bir vaka için enerji simülasyon yazılımı DesignBuilder programı vasıtasıyla birincil enerji tüketimi ihtiyaçlarını değerlendirmek için kullanılmıştır. Normal ağırlıklı betona kıyasla, taşıyıcı hafif beton kullanımı ile yıllık enerji ihtiyacında %15-%19 oranında bir azalma görülmüştür. Ayrıca, aylık ısıtma ve soğutma yükleri dikkate alındığında, taşıyıcı hafif betonların ısıtma enerjisi ihtiyacını önemli derecede azaltmış olduğu görülmüştür. Soğutma enerji ihtiyacı ise beton tipinden önemli derecede etkilenmemiştir.

Evaluation of structural lightweight concrete in terms of energy performance: A case study

In this study, it is aimed to produce structural lightweight concrete (SLWC) containing pumice aggregate and to evaluate its contribution to energy performance. Fly ash and metakaolin were used as substitutes with cement in the production of lightweight concrete. It was also produced normal weight concrete (NWC) for comparison. The compressive strength, the unit weight and the coefficient of thermal conductivity of the concretes produced were determined in accordance with relevant standards. The unit weights of the lightweight concrete are in the range of 1880-1900 kg/m3 , and the compressive strengths are between 20-27 MPa. It was observed that the thermal conductivity coefficients of the SLWCs are ranging from 0.54 to 0.63 W/mK and they decrease as the unit weights decrease. The properties of the SLWCs determined are used in the energy simulation software DesignBuilder to assess the primary energy consumption for a case study. With the use of SLWCs, it can be seen that the annual energy requirement decreases by 15% to 19% compared to NWC. In addition, when monthly heating and cooling loads are analysed, it can be seen that the SLWCs reduces the heating energy requirement significantly. However, the cooling energy needs were not significantly affected due to the type of concrete produced.

___

  • [1] Mo KH, Ling TC, Alengaram UJ, Yap SP, Yuen CW. “Overview of supplementary cementitious materials usage in lightweight aggregate concrete”. Construction of Building Materials, 139, 403-418, 2017.
  • [2] Türkel S, Kadiroğlu B. “Pomza agregali taşiyici hafif betonun mekanik özelliklerinin incelenmesi”. Pamukkale Üniversitesi Mühendislik Bilimleri Dergisi, 13(3), 353-359, 2007.
  • [3] Wongkvanklom A, Posi P, Khotsopha B, Ketmala C, Pluemsud N, Lertnimoolchai S, Chindaprasirt P. “Structural lightweight concrete containing recycled lightweight concrete aggregate”. KSCE Journal of Civil Engineering, 22(8), 3077-3084, 2018.
  • [4] Mays GC, Barnes RA. “The performance of lightweight aggregate concrete structures in service”. The Structural Engineer, 69(20), 351-361, 1991.
  • [5] Bogas JA. Characterization of Structural Lightweight Expanded Clay Aggregate Concrete. PhD Thesis, Technical University of Lisbon, Lisbon, Portugal, 2011.
  • [6] Neville AM., Properties of Concrete. New York, USA, Pearson Education, 1997.
  • [7] British Standard Institution. “BSI Document 92/87196- Europen Draft Standard Method of Test for Crushing Strength of Lightweight Aggregates”. London, UK, 1992.
  • [8] Turkish Standards Institution. “Mix Design for Structural Lightweight Aggregate Concrete”. Ankara, Turkey, 2511, 2017.
  • [9] Turkish Standards Institution. “Concrete-Specification, Performance, Production and Conformity”. Ankara, Turkey, 206, 2017.
  • [10] American Concrete Institute. “Guide for Structural Lightweight Aggregate Concrete”. Atlanta, USA, 213, 2003.
  • [11] Tanyildizi H, Coskun A. “The effect of high temperature on compressive strength and splitting tensile strength of structural lightweight concrete containing fly Ash”. Construction of Building Materials, 22, 2269-2275, 2008.
  • [12] Yazıcıoğlu S, Bozkurt N. “Pomza ve mineral katkili taşiyici hafif betonun mekanik özelliklerinin araştirilmasi”. Gazi Üniversitesi Mühendislik Mimarlık Fakültesi Dergisi, 21(4), 675-680, 2006.
  • [13] Shannag MJ. “Characteristics of lightweight concrete containing mineral admixtures”. Construction of Building Materials, 25, 658-662, 2011.
  • [14] Demirboğa R, Gül R. “Thermal conductivity and compressive strength of expanded perlite aggregate concrete with mineral admixtures”. Energy and Buildings, 35, 1155-1159, 2003.
  • [15] Budaiwi I, Abdou A, Al-Homoud M. “Variations of thermal conductivity of insulation materials under different operating temperatures: impact on envelope-induced cooling load”. Journal of Architectural Engineering, 8(4), 125-132, 2002.
  • [16] NIRAS. “Energy Systems and Measurement Methods in Buildings”. Ankara, Turkey, Scientific Report, 2016.
  • [17] Real S, Gomes MG, Rodrigues AM, Bogas JA. “Contribution of structural lightweight aggregate concrete to the reduction of thermal bridging effect in buildings”. Construction of Building Materials, 121, 460-470, 2016.
  • [18] ASTM International. “ASTM C330/330M-17a-Standard Specification for Lightweight Aggregates for Structural Concrete”. West Conshohocken, PA, USA, 2017.
  • [19] Turkish Standards Institution. “TS 802-Design of Concrete Mixes”. Ankara, Turkey, 2016.
  • [20] ASTM International. “ASTM C518-17-Standard Test Method for Steady-State Thermal Transmission Properties by Means of the Heat Flow Meter Apparatus”. West Conshohocken, PA, USA, 2017.
  • [21] Keleştemur O, Demirel B. “Effect metakaolin on the corrosion resistance of structural lightweight concrete”. Construction of Building Materials, 81, 172-178, 2015.
  • [22] Yazıcıoğlu S, Bozkurt N. “Pomza ve mineral katkili taşiyici hafif betonun mekanik özelliklerinin araştirilmasi”. Gazi Üniversitesi Mühendislik Bilimleri Fakültesi Dergisi, 21(4), 675-680, 2006.
  • [23] Demirboğa R, Gül R. “Thermal conductivity and compressive strength of expanded perlite aggregate concrete with mineral admixtures”. Energy and Buildings, 35, 1155-1159, 2003.
  • [24] Demirboğa R, Türkmen İ, Karakoç MB. “Thermomechanical properties of concrete containing highvolume mineral admixtures”. Building and Environment, 42, 349-354, 2007.
  • [25] Şengül Ö, Azizi S, Karaosmanoglu F, Taşdemir MA. “Effect of expanded perlite on the mechanical properties and thermal conductivity of lightweight concrete”. Energy and Buildings, 43, 671-676, 2011.
  • [26] Asadi I, Shafigh P, Bin Abu Hassan ZF, Mahyuddin NB. “Thermal conductivity of concrete- A Review”. Journal of Building Engineering, 20, 81-93, 2018.
  • [27] Turkish State Meteorological Service. “Extreme Maximum, Minimum and Average Temperatures Measured in Long Period (°C)”. https://www.mgm.gov.tr/eng/forecastcities.aspx (16.01.2020).
  • [28] DesignBuilder Software Ltd. “User’s Manual for DesignBuilder v6”. https://designbuilder.co.uk/download/documents (02.03.2019).
  • [29] Yaşar Y, Maçka Kalfa S. “The effects of window alternatives on energy efficiency and building economy in high-rise residential buildings in moderate to humid climates”. Energy Conversion and Management, 64, 170-181, 2012.
Pamukkale Üniversitesi Mühendislik Bilimleri Dergisi-Cover
  • ISSN: 1300-7009
  • Başlangıç: 1995
  • Yayıncı: PAMUKKALE ÜNİVERSİTESİ
Sayıdaki Diğer Makaleler

Çöp sızıntı suyu arıtımı için denitrifikasyon ve kısmi nitrifikasyon proseslerinin performansı

Ahmet DUYAR, Vildan CIFTCIOGLU, Gokhan CIVELEKOGLU, Kevser CIRIK

TOPEX V28.1 gravite verilerinin denizler hariç ana kara genelinde kullanılabilirliği; Batı Anadolu örneği

Tolga GÖNENÇ

Farklı kür sıcaklıklarında kireçle stabilize edilmiş yüksek plastisiteli killi bir zeminin kayma mukavemeti parametrelerinin Yanıt Yüzey Yöntemi (YYY) ile tahmini

Hakan Alper KAMİLOĞLU, Hüseyin TURAN

26 Eylül 2019 Marmara Denizi depremi’nin (5.8 Mw) İstanbul ve çevre illerde oluşturduğu zemin etkilerinin değerlendirilmesi

Hamdullah LİVAOĞLU, Fadime SERTÇELİK

İçme suyu dağıtım sistemlerinde sızıntı yönetimi ve şebeke rehabilitasyonu için fayda maliyet analizi

Fatih Mehmet DURMUŞÇELEBİ, Özgür ÖZDEMİR, Mahmut FIRAT

Farklı atık yağ modifiyeli bitümlerin farklı frekans ve sıcaklıklardaki reolojik özelliklerinin incelenmesi

Erkut YALÇIN, Mehmet YILMAZ

Güvenlik kriteri olarak çarpışmaya kadar geçen süre ve takip zaman aralığı karşılaştırılması

Ehsan RAMEZANI-KHANSARI, Fereidoon MOGHADAS NEJAD, Sina MOOGEH

Geri kazanılmış asfalt malzemenin uzun süreli filtrasyon performansı

Ayşegül BAYIN SARIAHMETOĞLU, Recep İYİSAN, Aslı YALÇIN DAYIOĞLU, Mustafa HATİPOĞLU

Taşıyıcı hafif betonun enerji performansı açısından değerlendirilmesi: Bir örnek çalışma

Safa NAYIR, Ümit BAHADIR, Şakir ERDOĞDU, Vedat TOĞAN

Astrazon Black MBL boyasının yenilikçi bir adsorbent ile giderimi: Taguchi metodu ile işletme parametrelerinin optimizasyonu

Elanur ADAR