Tanıtılmış bir hiperkaotik sistemin yeni bir analizi ve uygulamaları

Bu çalışmada, tanıtılmış bir hiperkaotik denklem setinin yeni bir analizi ele alınmıştır. Denklem seti önce matematiksel olarak analiz edilmiş, ardından aktif elemanlarla daha verimli bir devre tasarlanarak sonuçlar kanıtlanmıştır. Çalışmanın amacı, etkili bir güvenli iletişim uygulaması ve rastgele sayı üreteci uygulaması sunmaktır. Bu nedenle, denklem setinin yeni analizi temel alınarak güvenli iletişim sistemi ve rastgele sayı üretme uygulaması önerilmiştir. Bu bağlamda, bir Sözde Rastgele Sayı Üreticisi oluşturmak, bu çalışmadaki yolun yarısıdır. Kaotik osilatörden alınan sinyaller düşük frekansta örneklenmiş ve basit bir post-processing ile bit dizileri oluşturulmuştur. Elde edilen bit dizisi NIST testinden başarı ile geçmiştir. Çalışmadaki yolun diğer yarısı ise verici ve alıcıda bulunan iki kaotik osilatörün senkronizasyonu ile güvenli bir iletişim sistemi oluşturmaktır. Hem verici hem de alıcı parçalarda özdeş bir gürültü benzeri sinyal üretilir. Verici kısmında bilgiye gürültü benzeri kaotik bir sinyal eklenmektedir. Alıcıda, bu aynı gürültü benzeri sinyal algılanan sinyalden çıkarılır. Böylece bilgiler güvenli bir şekilde iletilebilir. Önerilen iki uygulamanın da SPICE benzetimleri yapılmış, matematiksel analizler ile uyumlu olduğu gösterilmiştir. Önerilen devreler, ticari olarak bulunan devre elemanları ile gerçeklenmeye uygundur.

A novel analysis and applications of an introduced hyperchaotic system

In this study, the new analysis of the introduced hyperchaotic equation set was handled. The equation set was firstly analyzed mathematically and then the results were proven by designing a more efficient circuit with active elements. The aim of the study is offering an effective secure communication application and random number generator application. Hence, based on the new analysis of equation set, secure communication system and random number generation application were proposed. Accordingly, creating a Pseudorandom Number Generator is the halfway house in this study. The signals received from the chaotic oscillator were sampled at low frequency and with a simple post-processing, a bit stream was created. The resulting bit stream passed the NIST test successfully. The other halfway of the study is creating a secure communication system by the synchronization of two chaotic oscillators that are in transmitter and receiver. An identical noise-like signals are generated in both transmitter and receiver parts. At the transmitter part adding a noise-like chaotic signal to the information is done. At the receiver, this same noise-like signal is subtracted from the perceived signal. Thus, the information can be transmitted securely. Spice simulations of both proposed applications have been made and it has been shown that they are compatible with mathematical analysis. The proposed circuits are suitable for realization with commercially available circuit elements.

___

  • [1] Corron NJ, Hahs DW. “A new approach to communications using chaotic signals”. IEEE Transactions on Circuits and Systems I Fundamental Theory and Applictions, 4(5), 373-382, 1997.
  • [2] Aydos M, Ugur A. “Chaotic image encryption with random shuffling of data”. Pamukkale University Journal of Engineering Sciences, 20(2), 31-35, 2014.
  • [3] Aydın Ö, Kösemen C. “XORSHIFTUL+: A novel hybrid random number generator for internet of things and wireless sensor network applications”. Pamukkale University Journal of Engineering Sciences, 26(5), 953-958, 2020.
  • [4] Liu Y, Jiang Z, Xu X, Zhang F, Xu J. “Optical image encryption algorithm based on hyper-chaos and public-key cryptography”. Optics & Laser Technology, 127(1), 1-10, 2020.
  • [5] Wang X, Zhao M. “An image encryption algorithm based on hyperchaotic system and DNA coding”. Optics & Laser Technology, 143(1), 21-28, 2021.
  • [6] Gao X. “A color image encryption algorithm based on an improved Hénon map”. Physica Scripta, 96(6), 12-20, 2021.
  • [7] Wang T, Wang D, Wu K. “Chaotic adaptive synchronization control and application in chaotic secure communication for industrial internet of things”. IEEE Access, 6(1), 8584-8590, 2018.
  • [8] Zirem A, Senouci MR. “Efficient lightweight chaotic secure communication system for WSNs and IoT”. 2018 International Conference on Smart Communications in Network Technology SaCoNeT 2018, 43-48, El Oued, Algeria, 27-31 October 2018.
  • [9] Triandi B, Ekadiansyah E, Puspasari R, Iwan LT, Rahmad F. “Improve security algorithm cryptography vigenere cipher using chaos functions”. 2018 6th International Conference on Cyber and IT Service Management CITSM 2018, Parapat, Indonesia, 7-9 August 2018.
  • [10] Çetin M, Beyhan S. “State and parameter estimation of uncertain brain cortex model”. University Journal of Engineering Sciences, 24(8), 1425-1434, 2018.
  • [11] Klioutchnikov I, Sigova M, Beizerov N. “Chaos theory in finance”. Procedia Computer Science, 119(2017), 368-375, 2017.
  • [12] Levy D. “Chaos theory and strategy: theory, application, and managerial implications”. Strategic Management Journal, 15(2), 167-178, 1994.
  • [13] Hilborn RC. Chaos and Nonlinear Dynamics: An Introduction For Scientists and Engineers. 2nd ed. New York, USA, Oxford University Press, 2000.
  • [14] Alçın M, Tuna M, Pehlivan İ, Koyuncu İ. “CCII current conveyor and dormand-prince-based chaotic oscillator designs for secure communication applications”. International Advanced Researches and Engineering Journal, 4(3), 217-225, 2020.
  • [15] Kolumbán G, Kennedy MP, Chua LO. “The role of synchronization in digital communications using chaos-Part II: Chaotic modulation and chaotic synchronization”. IEEE Transactions on Circuits and Systems I Fundamental Theory and Applications, 45(11), 1129-1140, 1998.
  • [16] Sambas A, Mada Sanjaya WS, Mamat M, Tacha O. “Design and numerical simulation of unidirectional chaotic synchronization and its application in secure communication system”. Journal of Engineering Science and Technology Review, 6(4), 66-73, 2013.
  • [17] Chen HC, Chang JF, Yan JJ, Liao TL. “EP-based PID control design for chaotic synchronization with application in secure communication”. Expert Expert Systems with Applications, 34(2), 1169-1177, 2008.
  • [18] Wen G, Wang QG, Lin C, Li G, Han X. “Chaos synchronization via multivariable PID control”. International Journal of Bifurcation and Chaos, 17(5), 1753-1758, 2007.
  • [19] Rukhin A, Soto J, Nechvatal J. “A Statistical Test Suite for Random and Pseudorandom Number Generators for Cryptographic Applications”. Special Publication (NIST SP), National Institute of Standards and Technology, Gaithersburg, Maryland, USA, 2010.
  • [20] Lü J, Chen G, Cheng D. “A new chaotic system and beyond: The generalized lorenz-like system”. International Journal of Bifurcation and Chaos, 14(5), 1507-1537, 2004.
  • [21] Zhang Z. A Multi-threaded Cryptographic Pseudorandom Number Generator Test Suite, MSc Thesis, Naval Postgraduate School, Monterey, United States, 2016.
  • [22] Jiang ZP. “A note on chaotic secure communication systems”. IEEE Transactions on Circuits and Systems I: Fundamental Theory and Applications, 49(1), 92-96, 2002.
  • [23] Lorenz EN. “Deterministic nonperiodic flow”. Journal of Atmospheric Sciences, 20(2), 130-141, 1963.
  • [24] Pecora LM, Carroll TL. “Synchronization in chaotic systems”. Physical review letters, 64(8), 821-824, 1990.
  • [25] Cuomo KM, Oppenheim AV. “Circuit implementation of synchronized chaos with applications to communications”. Physical Review Letters, 71(1), 65-68, 1993.
  • [26] Parlitz U, Chua LO, Kocarev L, Halle KS, Shang A, “Transmission of digital signals by chaotic synchronization”. International Journal of Bifurcation and Chaos, 2(4), 973-977, 1992.
  • [27] Iglesias A, Gutierrez JM, Ansotegui D, Carnicero MA. “Transmission of digital signals by chaotic synchronization. Application to secure communications”. WIT Transactions on Engineering Sciences, 15(1), 1-8, 1997.
  • [28] Kiani-B A, Fallahi K, Pariz N, Leung H. “A chaotic secure communication scheme using fractional chaotic systems based on an extended fractional Kalman filter”. Communications in Nonlinear Science and Numerical Simulation, 14(3), 863-879, 2009.
  • [29] Tchitnga R, Nguazon T, Fotso PHL, Gallas JAC. “Chaos in a single op-amp-based jerk circuit: Experiments and simulations”. IEEE Transactions on Circuits and Systems II: Express Briefs, 63(3), 239-243, 2015.
  • [30] Emiroglu S, Akgül A, Adıyaman Y, Gümüş TE, Uyaroglu Y, Yalçın MA. “A new hyperchaotic system from T chaotic system: dynamical analysis, circuit implementation, control and synchronization”. Circuit World, 2021(2), 1-13, 2021.
  • [31] Sahin ME, Cam Taskiran ZG, Guler H, Hamamci SE. “Application and modeling of a novel 4D memristive chaotic system for communication systems”. Circuits, Systems and Signal Processing, 39(7), 3320-3349, 2020.
  • [32] Yu F, Shen H, Liu L, Zhang Z, Huang Y, He B, Cai S, Song Y, Yin B, Du S, Xu Q.“CCII and FPGA realization: A multistable modified fourth-order autonomous Chua’s chaotic system with coexisting multiple attractors”. Complexity, 2020(1), 1-17, 2020.
  • [33] Joshi M, Ranjan A. Realization of Novel Multi-scroll 2D Chaotic Oscillator Using DVCC. Editors: Mishra S, Sood YR, Tomar A. Applications of Computing, Automation And Wireless Systems İn Electrical Engineering, 1093-1101, Cham, Switzerland, Springer, 2019.
  • [34] Tippett LHC. Random Sampling Numbers. Editors: Pearson K. Tracts For Computers, 8-26, London, UK, Cambridge University Press, 1927.
  • [35] The Rand Corporation. A Million Random Digits With 100,000 Normal Deviates. 1st ed. Santa Monica, CA, USA, RAND Corporation, 1955.
  • [36] Vaidyanathan S, Akgul A, Kaçar S, Çavuşoğlu U. “A new 4- D chaotic hyperjerk system, its synchronization, circuit design and applications in RNG, image encryption and chaos-based steganography”. The European Physical Journal Plus, 133(2), 1-18, 2018.
  • [37] Widynski B. “Squares: A Fast Counter-Based RNG”. arXiv Preprint, https://arxiv.org/abs/2004.06278 (16.03.2022).
  • [38] Bao B, Liu Z, Xu J. “New chaotic system and its hyperchaos generation”. Journal of Systems Engineering and Electronics, 20(6), 1179-1187, 2009.
  • [39] Texas Instruments. “LM741 Operational Amplifier Datasheet”. Dallas, Texas, USA, Rev. D, 2015.
  • [40] Texas Instruments. “LF347, LF347B JFET-Input Quad Operational Amplifiers”. Dallas, Texas, USA, 2016.
  • [41] Analog Devices, “AD633 Low Cost Analog Multiplier Datasheet”. Norwood, MA, USA, Rev. K, 2015.
  • [42] MATLAB. “MathWorks Announces Release 2019b of MATLAB and Simulink”. https://www.mathworks.com/company/newsroom/mat hworks-announces-release-r2019b-of-matlab-andsimulink.html (16.03.2022).
  • [43] Wolf A, Swift JB, Swinney HL, Vastano JA. “Determining Lyapunov exponents from a time series”. Physica D: Nonlinear Phenomena, 16(3), 285-317, 1985.
  • [44] Grassberger P, Procaccia I. Measuring The Strangeness of Strange Attractors. Editors: Hunt BR, Li TY, Kennedy JA, Nusse HE. The Theory of Chaotic Attractors, 170-189, New York, USA, Springer,2004.
Pamukkale Üniversitesi Mühendislik Bilimleri Dergisi-Cover
  • ISSN: 1300-7009
  • Başlangıç: 1995
  • Yayıncı: PAMUKKALE ÜNİVERSİTESİ
Sayıdaki Diğer Makaleler

Hidrojen depolama sistemi için indüksiyon ısıtmalı metal hidrür tüp

Salih NACAR, Selim ÖNCÜ, Muhammet KAYFECİ

Türkiye’nin yenilenebilir enerji projeleri ile geliştirebileceği karbon sertifikası potansiyeli

Mustafa OZCAN

Çoklu-analit algılama amacıyla pasta-şeklinde fotonik kristal fiber bazlı yüzey plazmon rezonans algılayıcı

Ahmet YASLI, Hüseyin ADEMGİL

Tanıtılmış bir hiperkaotik sistemin yeni bir analizi ve uygulamaları

Emrah TELLİ, Zehra Gülru ÇAM TAŞKIRAN

Sürücü yorgunluk evrelerinin EEG işaretleri ile tespiti ve analizi

Ahmet DEMİR, Şule BEKİRYAZICI, Oğuzhan ÇOŞKUN, Recep EKEN, Güneş YILMAZ

KOAH parametrelerini ölçebilecek spirometrik bir ölçüm sisteminin tasarlanması ve gerçekleştirilmesi

Harun SÜMBÜL, Ahmet Hayrettin YÜZER

Göz, kaş ve baş hareketlerine dayalı bir insan-bilgisayar etkileşimi sistemi

Muhammed Oğuz TAS, Hasan Serhan YAVUZ

Seul Şehri meteorolojik verileri kullanılarak makine öğrenmesi regresyon yöntemleri ile hava sıcaklığının değerlendirilmesi

Merve APAYDIN, Mehmethan YUMUŞ, Ali DEĞİRMENCİ, Ömer KARAL

Türkçe metinlerde hedef terimi çıkarımı için bir topluluk yaklaşımı

Mehmet Umut SALUR, İlhan AYDIN, Maen JAMOUS

Halojensiz ve alev geciktiricili (HFFR) polimerik kompozit kılıflı kablo kopma uzaması test sonuçlarının makine öğrenmesi yöntemleri kullanılarak tahmin edilmesi

İsmail KIYICI, İbrahim DORUK, Emre ÇOMAK, Murat KAÇAMAZ, Ragıp Onur BAKLAN