KOAH parametrelerini ölçebilecek spirometrik bir ölçüm sisteminin tasarlanması ve gerçekleştirilmesi

Son zamanlarda bütün dünyaya yayılan ve dünya sağlık örgütü tarafından Pandemi (dünya geneli salgın) ilan edilen koronavirüs (Covid-19) salgını nedeni ile solunum cihazlarına olan önem ve ihtiyaç bir kez daha kendisini göstermiştir. Solunum aktivitesinin izlenmesi, Kronik Obstrüktif Akciğer Hastalığı (KOAH) gibi solunum kaynaklı hastalıkların saptanmasında hayati bir rol oynar. Bu çalışmada solunum parametreleri ölçümleri için 6 katılımcıdan oluşan bir çalışma grubu oluşturulmuştur. Her bireyden FVC, VC, MVV, RR ve TV performansı gerçekleştirmesi sağlanmıştır. Ölçümler, medikal spirometre cihazı ile eş zamanlı gerçekleştirilmiştir. Toplamda 1860 veri (VC için 1500, MVV için 360 veri) örneklenmiş ve bütün veriler Matlab programında analiz edilmiştir. Elde edilen sonuçların, birbirlerine oldukça benzer olduğu (MVV için Rmvv=0.998; VC için Rvc=0.997) olduğu görülmüştür. Bu çalışmanın en önemli katkılarından biri de, ölçülen verilerin bilgisayara gönderilebilmesi ve SD karta kaydedilebilmesidir. Böylece standart spirometrelerde bulunan termal yazıcılar ile kâğıt israfının önüne geçilmiş ve veriler dijital ortamda saklanmıştır. Geliştirilen sistem pratik ve düşük maliyetli bir çözüm sunmaktadır. Geliştirilen cihazın biyomedikal cihaz teknolojisinde Koah parametrelerini ölçme kabiliyeti ile önemli bir yer alması beklenmektedir.

Design and implementation of a spirometric measurement system that can measure COPD parameters

The importance and need for respirators has once again shown itself due to the coronavirus (Covid-19) epidemic, which has recently spread around the world and has been declared as a Pandemic (epidemic worldwide) by the world health organization. Monitoring respiratory activity plays a vital role in detecting respiratory diseases such as Chronic Obstructive Pulmonary Disease (COPD). In this study, a working group of 6 participants was formed to measure respiratory parameters. Each individual was provided to perform FVC, VC, MVV, RR and TV performance. The measurements were carried out simultaneously with the medical spirometer device. A total of 1860 data (1500 data for VC, 360 data for MVV) were sampled and all data were analyzed in Matlab program. It was observed that the results obtained were quite similar to each other (RMVV=0.998 for MVV; RVC=0.997 for VC). One of the most important contributions of this study is that the measured data can be sent to the computer and saved to the SD card. Thus, with the thermal printers in standard spirometers, paper wastage was prevented and the data was stored in digital environment. The developed system offers a practical and low cost solution. The developed device is expected to take an important place in biomedical device technology with its ability to measure COPD parameters.

___

  • [1] Sümer E, Engin M, Ağıldere M, Oğul H. “Monitoring nodule progression in Chest X-ray images”. Pamukkale Üniversitesi Mühendislik Bilimleri Dergisi, 24(5), 934-941, 2018.
  • [2] Vestbo J, Hurd SS, Agusti AG, Jones PW, Vogelmeier C, Anzueto A, Barnes PJ, Fabbri LM, Martinez FJ, Nishimura M, Stockley RA, Sin DD, Roisin RR. “Global strategy for the diagnosis, management and prevention of chronic obstructive pulmonary disease”. American Journal of Respiratory and Critical Care Medicine. 187(4), 347-65, 2013.
  • [3] Mann J, Rabinovich R, Bates A, Giavedoni S, Macnee W, Arvind DK. “Simultaneous activity and respiratory monitoring using an accelerometer”. Body Sensor Networks (BSN), International Conference on. Institute of Electrical and Electronics Engineers (IEEE), Dallas, TX, USA, 23-25 May 2011.
  • [4] Sümbül H, Yüzer AH, Şekeroğlu K. “A novel portable realtime low-cost sleep apnea monitoring system based on the global system for mobile communications (GSM) network”. Medical & Biological Engineering & Computing, 60, 619-632, 2022.
  • [5] Mathers CD, Loncar D. “Projections of global mortality and burden of disease from 2002 to 2030”. PLOS Medicine. 3(11), 2011-2030, 2006.
  • [6] World Health Organization. “The Top 10 Causes of Death”. https://www.who.int/news-room/factsheets/detail/the-top-10-causes-of-death (17.04.2020).
  • [7] Sarlabous L, Torres A, Fiz JA, Gea J, Martínez-Lorens JM and Jane R. “Evaluation of the respiratory muscular function by means of diaphragmatic mechanomyographic signals in COPD patients”. 31st Annual International Conference of the IEEE EMBS, Minneapolis, Minnesota, USA, 2-6 September 2009.
  • [8] Sümbül H, Yüzer AH. “Measuring of diaphragm movements by using iMEMS acceleration sensor”. 9th International Conference on Electrical and Electronics Enginering (ELECO 2015), 166-170, Bursa, Turkey, 26-28 November 2015.
  • [9] Devi GM, Venkatesan P. “Least squares support vector regression for spirometric forced expiratory volume (FEV1) values”. International Journal of Science and Technology, 3(1), 74-78, 2013.
  • [10] Waghmare KA, Wakode BV, Chatur PN. “Spirometry data analysis and classification using artificial neural network: an approach”. International Journal of Emerging Technology and Advanced Engineering, 2(1), 67-70, 2012.
  • [11] Al-Ashkar F, Mehra R, Mazzone PJ. “Interpreting pulmonary function tests: Recognize the pattern and the diagnosis will follow”. Cleveland Clinic Journal of Medicine, 70(10), 866-881, 2003.
  • [12] Feher J. Lung Volumes and Airway Resistance. Editors: Merken S, McFadden N. Quantitative Human Physiology an Introduction, 563-571, Boston, USA, Academic Press is an Imprint of Elsevier, 2017.
  • [13] Barthel P, Wansel R, Bauer A, Müller A, Wolf P, Ulm K, Huster KM, Francis DF, Malik M, Schmidt G. “Respiratory rate predicts outcome after acute myocardial infarction: a prospective cohort study”. European Heart Journal, 34(22), 1644-1650, 2012.
  • [14] Patel S, Healey, Moy M. “Using wearable sensors to monitor physical activities of patients with COPD: a comparison of classifier performance”. Sixth International Workshop on Wearable and Implantable Body Sensor Networks, Berkeley, CA, USA, 3-5 June 2009.
  • [15] Fox NA, Heneghan C, Gonzales M, Shouldice RB, Chazal P. “An evaluation of a non-contact biomotion sensor with actimetry”. Proceedings of the 29th Annual International Conference of the IEEE Engineering in Medicine and Biology Society, Lyon, France, 23-26 August 2007.
  • [16] Sümbül H, Yüzer AH. “Development of diagnostic device for COPD: A MEMS based approach”. International Journal of Computer Science and Network Security, 17(7), 196-203, 2017.
  • [17] Sümbül H, Yüzer AH. “Estimating the value of the volume from acceleration on the diaphragm movements during breathing”. Journal of Engineering Science and Technology, 13(5), 1205-1221, 2018.
  • [18] Deniz N, Özçelik F. “Sağlık hizmet süreçlerinin yalın düşünce aracılığıyla geliştirilmesi”. Pamukkale Üniversitesi Mühendislik Bilimleri Dergisi, 24(4), 739-748, 2018.
  • [19] Agarwal V, Ramachandran NCS. “Design and development of a low-cost spirometer with an embedded web server”. International Journal Biomedical Engineering and Technology, 1(4), 200-439, 2008.
  • [20] Zhou P, Yang L, Huang Y. “A Smart phone based handheld wireless spirometer with functions and precision comparable to laboratory spirometers”. Sensors, 19(11), 2487-2498, 2019.
  • [21] He Y, Yang B, Xiong S, Li Q. “Design of portable spirometer based on internet of things of medicine”. Chinese, 42(2), 103-106, 2018.
  • [22] Tardi G, Massaroni C, Saccomandi P, Schena E. “Experimental assessment of a variable orifice flowmeter for respiratory monitoring”. Journal of Sensors, 7, 1-7, 2015.
  • [23] Mehta P, Sinha V. “Development of first proto-types of a low-cost computer based solid-state spirometer for application in rural health-care centres across India”. Global Journal of Medical Research, 13(12), 7-17, 2013.
  • [24] Lo Presti D, Romano C, Massaroni C, D’Abbraccio J, Massari L, Caponero M A, Oddo CM, Formica D, Schena E. “CardioRespiratory monitoring in archery using a smart textile based on flexible fiber bragg grating sensors”. Sensors, 19(16), 3581-3595, 2019.
  • [25] Schena E, Lupi G, Cecchini S, Silvestri S. “Linearity dependence on oxygen fraction and gas temperature of a novel Fleisch pneumotachograph for neonatal ventilation at low flow rates”. Measurement, 45(8), 2064-2071, 2012.
  • [26] Schena E, Massaroni C, Saccomandi P, Cecchini S. “Flow measurement in mechanical ventilation: A review”. Medical Engineering & Physics, 37(3), 257-264, 2015.
  • [27] Diferansiyel Basınç Sensörü. “160PC Series Pressure Sensor”. https://tr.farnell.com/honeywell/163pc01d75/pressure -sensor-2-5-h2o/dp/731882 (21.01.2021).
Pamukkale Üniversitesi Mühendislik Bilimleri Dergisi-Cover
  • ISSN: 1300-7009
  • Başlangıç: 1995
  • Yayıncı: PAMUKKALE ÜNİVERSİTESİ
Sayıdaki Diğer Makaleler

LC/S kompanzasyonu kullanan sekonder taraf kontrollü bir kablosuz güç transfer dönüştürücüsünün sabit gerilim kontrolü

Veli YENİL, Sevilay ÇETİN

Hibrit sinir ağı yaklaşımı ile kopyala-taşı sahteciliği tespiti ve lokalizasyonu

Gül TAHAOĞLU, Guzin ULUTAS

Seul Şehri meteorolojik verileri kullanılarak makine öğrenmesi regresyon yöntemleri ile hava sıcaklığının değerlendirilmesi

Merve APAYDIN, Mehmethan YUMUŞ, Ali DEĞİRMENCİ, Ömer KARAL

Çoklu-analit algılama amacıyla pasta-şeklinde fotonik kristal fiber bazlı yüzey plazmon rezonans algılayıcı

Ahmet YASLI, Hüseyin ADEMGİL

MongoDB'nin tam metin arama performansını iyileştirme yöntemi

Altan MESUT, Emir ÖZTÜRK

Videolarda kenar algılamaya dayalı çerçeve tekrarlama sahteciliği tespiti

Işılay BOZKURT, Güzin ULUTAŞ

Sürücü yorgunluk evrelerinin EEG işaretleri ile tespiti ve analizi

Ahmet DEMİR, Şule BEKİRYAZICI, Oğuzhan ÇOŞKUN, Recep EKEN, Güneş YILMAZ

Türkçe metinlerde hedef terimi çıkarımı için bir topluluk yaklaşımı

Mehmet Umut SALUR, İlhan AYDIN, Maen JAMOUS

Halojensiz ve alev geciktiricili (HFFR) polimerik kompozit kılıflı kablo kopma uzaması test sonuçlarının makine öğrenmesi yöntemleri kullanılarak tahmin edilmesi

İsmail KIYICI, İbrahim DORUK, Emre ÇOMAK, Murat KAÇAMAZ, Ragıp Onur BAKLAN

Hidrojen depolama sistemi için indüksiyon ısıtmalı metal hidrür tüp

Salih NACAR, Selim ÖNCÜ, Muhammet KAYFECİ