Mevcut binalarda beton basınç dayanımının karot sayısına bağlı değişiminin incelenmesi

Beton basınç dayanımı betonarme yapıların sismik performansını etkileyen en önemli parametrelerden birisidir. Taşıyıcı sistem elemanlarından karot numunesi alınması, basınç dayanımının tayininde kullanılan en yaygın yöntemlerden birisidir. Ancak yapı büyüklüğüne de bağlı olarak hesaplanan beton basınç dayanımı alınan karot sayısına göre değişkenlik gösterebilmektedir. Bu nedenle mevcut basınç dayanımının doğru şekilde tahmin edilebilmesi için optimum sayıda karot numunesi alınması büyük önem arz etmektedir. Gerçekleştirilen çalışmada bina mevcut beton dayanımının daha düşük sayıda karot numunesi ile tahmin edilmesinin mümkün olup olmadığı araştırılmıştır. Bu kapsamda Simav depremi sırasında az ve orta hasarlı olarak belirlenen 148 binadan alınan karot numuneleri kullanılmıştır. Alınan karot numunelerinin %50’si ve %70’i rastgele seçilerek her bina için 15 farklı set oluşturulmuştur. Oluşturulan setlerden hesaplanan basınç dayanım değerleri ile tüm karot numuneleri için hesaplanan basınç dayanımları karşılaştırılarak daha az sayısa karot numunesi alınması durumunda mevcut dayanımın ne ölçüde tahmin edilebildiği incelenmiştir. Ayrıca beton basınç dayanımının katlara göre değişkenliği ve zemin kat gibi belirli bir katın bina basınç dayanımını ne ölçüde yansıttığı da incelenmiştir. Elde edilen sonuçlar incelendiğinde geniş ölçekli hızlı değerlendirme çalışmalarında ilgili yönetmeliklerce alınması gereken minimum karot sayısının %50’sinin kullanımın ortalama dayanımı 8 MPa’dan yüksek binalar için mümkün olduğu değerlendirilmektedir. Ortalama basınç dayanımı 8 MPa’dan daha düşük binalar içinse gerekli minimum karot sayısının %70’nin kullanılması mümkün görülmektedir.

Investigation of concrete compressive strength of existing buildings depending on number of core samples

Concrete strength is one of the most critical parameters that affect the seismic performance of reinforced concrete constructions. One of the common methods to determine the concrete compressive strength is to take core samples from structural members. However, the number of taken core samples-based on the size of the construction–is important for reliable results, especially in old constructions. This study aims to investigate the possibility of determination of the concrete compressive strength values of existing buildings using lower number of core samples than the required number of cores. For this purpose, experimental results of core samples taken from 148 slightly or moderately damaged reinforced concrete buildings during 2011 Simav Earthquake. Concrete compressive strength values based on 15 different sets obtained by using 50% and 70% of the core samples of each building are compared. The compressive strength values calculated from the sets were compared with the average compressive strengths of all core samples to investigate accuracy of estimation of compressive strength with using lower number of core samples. The study also investigates whether there is a significant difference between samples taken from a single story (i.e. ground story) compared to the whole building. It is concluded that the use of %50 of the required core samples is possible for the rapid assessment or large-scale field investigation studies when the obtained concrete strength is equal to or greater than 8 MPa. However, additional core samples to complete 70% of the code required samples are required for concrete strength values lower than 8 MPa.

___

  • Ozmen, HB, Inel M, Meral E. “Evaluation of the main parameters affecting seismic performance of the RC buildings”. Sadhana-Academy Proceedings in Engineering Science, 39(2), 437-450, 2014.
  • Binici H, Cagatay I, Kaplan H. “Experimental Study on Effect of Various Factors on Compressive Strength of Concrete”. Pamukkale University Journal of Engineering Sciences, 6(3), 203-209, 2000.
  • FEMA-356. “Prestandart and commentary for the seismic rehabilitation of buildings”. Federal Emergency Management Agency, Washington, 2000.
  • Cen. “Eurocode 8: Design of structures for earthquake resistance Part 3: Assessment and retrofitting of buildings.” Comité Européen de Normalisation, Bruxelles, 2004.
  • Turkish Earthquake Code-TEC 2007. “Specifications for buildings to be built in seismic areas”. Ministry of Public Works and Settlement, Ankara, Turkey, 2007 (in Turkish).
  • Turkish Risky Buildings Detection Code-TRBDC. “The law of Transformation Areas under the Disaster Risks (Law No. 6306)”. Ministry of Environment and Urbanisation, Ankara, Turkey, 2012 (in Turkish).
  • Inel M, Un H, Ozmen HB, Akyol E, Cayci BT, Ozcan G. “Investigation of the feasibility of retrofitting the moderately damaged buildings in Simav region and surroundings”. Report for Disaster and Emergency Management Presidency, Denizli, Turkey, 2011.
  • Google. “Google Maps Services“. http://maps.google.com/, (08.11.2012).
  • Disaster and Emergency Management Presidency (DEMP). “Building damage results in Kutahya”. Ankara, Turkey, 2011.
  • Ozmen, HB, Inel M, Akyol E, Cayci BT, Un H. “Evaluations on the Relation of RC Building Damages with Structural Parameters after May 19, 2011 Simav (Turkey) Earthquake”. Natural Hazards, 71(1), 63-84, 2014.
  • Inel, M, Ozmen, HB, Akyol, E. “Observations on the building damages after 19 May 2011 Simav (Turkey) earthquake”. Bulletin of Earthquake Engineering, 11 (1) 255–283, 2013.
  • Turkish Earthquake Code. “Specifications for buildings to be built in seismic areas”. Ministry of Public Works and Settlement, Ankara, 1998 (in Turkish).
  • TS 10465 “Test method for concrete- obtaining samples and determination of compressive strength in hardened concrete in structures and components (Destructive Method)”. Turkish Standards Institution, Ankara, 1992.
  • ASTM C42/C 42M-99. “Standard Test Method for Obtaining and Testing Drilled Cores and Sawed Beams of Concrete1”. ASTM, USA, 1999.