İstatistiksel yaklaşım kullanarak heterojen foto-Fenton benzeri oksidasyon ile atrazin arıtımı

Atrazin (ATZ) triazin herbisit olup tarım arazileri üzerindeki kontrol bitkileri için kullanılmaktadır. Endokrin bozucu bir pestisit olarak sınıflandırılmaktadır. ATZ, yarı ömrnün uzun olması, güneş ışığı ve mikroorganizma ile parçalanması yavaş olması nedeni ile nedeniyle su ve toprakta kalıcıdır. Heterojen Fenton prosesi ile kirletici maddelerin hidroksil radikali ile oksitlenmesi ve adsorpsiyonu mümkün olup atrazinin parçalanması için etkili bir yöntemdir. Hidroksil radikal oluşumu hidrojen peroksit ve manyetit kullanımı ile artırılabilmektedir. Bu çalışmada atrazini giderebilmek için heterojen Foto-Fenton benzeri oksidasyon yöntemi uygulanmıştır. İstatiksel yöntemi olan yüzey yanıt yönteminde; atrazin, hidrojen peroksit ve manyetit konsantrasyonlarının bağımsız değişkenlerin atrazin giderme verimi üzerindeki etkileri araştırılmıştır. Atrazinin tamamen parçalanması bir saatlik reaksiyon süresinde gerçekleştirilmiştir. Optimum H2O2/Manyetit/ATZ oranı 10/5/0.7 olarak belirlenmiştir ve optimum oranda atrazin giderme verimi %97.5 olarak elde edilmiştir.

Atrazine treatment with heterogeneous photo-Fenton like oxidation using statically approach

Atrazine (ATZ) which is a triazine herbicide can be used for the control weeds on agricultural land and it is classified as an endocrine disrupting pesticide. ATZ is persistent in water and soil due to its half-life and slow degradation by means of sunlight and microorganism. The heterogeneous Fenton process is an effective technique for degrading atrazine because of the oxidation and adsorption of pollutants by hydroxyl radical. The hydroxyl radical formation has been accelerated by addition of hydrogen peroxide and magnetite. heterogeneous Photo-Fenton like oxidation were executed to remove atrazine in this study. Effects of independent variables namely the concentrations of atrazine, hydrogen peroxide and magnetite on atrazine removal efficiency were investigated by using the surface response analysis. Atrazine degradation was completely achieved with an hour. Optimal H2O2/Magnetite/ATZ ratio resulting by optimum atrazine removal efficiency (97.5%) was determined as 10/5/0.7, respectively.

___

  • Martin-Neto L, Traghetta DG, Vaz P, Crestana S, Sposito G. “On the interaction mechanisms of atrazine and hydroxyatrazine with humic substances”. Journal of Enviromental Quality, 2, 520-525, 2001.
  • Chan K.H, Chu W. “Model applications and mechanism study on the degradation of atrazine by Fenton’s system”. Journal of Hazardous Materials, 118(1-3), 227-237, 2005.
  • Murphya MB, Hecker M, Coady KK, Tompsettb AR, Jones D, Du Preez LH. “Atrazine concentrations, gonadal gross morphology and histology in ranid frogs collected in Michigan agricultural areas”. Aquatic Toxicology, 76, 230-45, 2006.
  • Dehghani M, Nasseri N, Amin SA, Zamanian Z. “Assessment of atrazine distribution in Shiraz soils, South of Iran”. Pakistan Journal of Biological Science, 13(2),66-72, 2010.
  • Benzaquen T, Benzzo M, Isla M, Alfano O. “Impact of some herbicides on the biomass activity in biological treatment plants and biodegradability enhancement by a photo-Fenton process”. Water Science Technology, 67, 210-216, 2013.
  • Ribeiro A, Nunes O, Pereira M, Silva A. “An overview on the advanced oxidation processes applied for the treatment of water pollutants defined in the recently launched Directive 2013/39/EU”. Enviromental Inernational, 75, 33-51, 2015.
  • Klamerth N, Miranda N, Malato S, Aguera A, Fernandez-Alba A, Maldonado M, Coronado J. “Degradation of emerging contaminants at low concentrations in MWTPs effluents with mild solar photo-Fenton and TiO2”. Catalytic Today, 144, 124-130, 2009.
  • Maldonado M, Passarinho P, Oller I, Gernjak W, Fernandez P, Blanco J, Malato S. “Photocatalytic degradation of EU priority substances: a comparison between TiO2 and Fenton plus photo-Fenton in a solar pilot plant”. Journal of Photochemical and Photobiology A: Chemistry, 185, 354-363, 2007.
  • Perez M, Penuela G, Maldonado M, Malato O, Fernandez- Ibanez P, Oller L, Gernjak W, Malato S. “Degradation of pesticides in water using solar advanced oxidation processes”. Applied Catayst, B. 64, 272-281, 2006.
  • Hou L, W. Zhang Q, Jerome HF, Duprez D, Zhang H, Royer S. “Shape-controlled nanostructured magnetite-type materials as highly efficient Fenton catalysts”. Applied Catalyst, B. 144, 739-749, 2014.
  • Cornell RM, Schwertmann U. The Iron Oxides: Structure, Properties, Reactions Occurrences, and Uses. 2nd ed. Newyork, USA, Wiley, 2003.
  • Boza A, De La Cruz Y, Jordan G, Jauregui-Haza U, Aleman A, Caraballo I. “Statistical optimization of a sustained-release matrix tablet of lobenzarit disodium”. Drug Devolepment and Industrial Pharmacy, 26, 1303-1307, 2000.
  • Box GEP, Wilson KB. “On the experimental attainment of optimum multifactorial conditions”. Royal Statistics Society, 13, 1-12, 1951.
  • Singh SK, Dodge J, Durranı MJ, Khan MA. “Optimization and characterization of controlled release pellets coated with an experimental latex: I. Anionic drug”. International Journal Pharmacy, 125, 243-255, 1995.
  • Sastry SV, Khan MA. “Aqueous based polymeric dispersion: Plackett-Burman design for screening of formulation variables of atenolol gastrointestinal therapeutic system”. Pharm Acta Helvetiae, 73, 105-112, 1998.
  • Hamed E, Sakr A. “Application of multiple response optimization technique to extended release formulations design”. Journal of Control Release, 73, 329-338, 2001.
  • Glaze WH, Kang J, Lay Y. “Advanced oxidation processes. A kinetic model for the oxidation of 1,2-dibromo-3-chloropropane in water by the combination of hydrogen peroxide and UV radiation”. Industrial Engineering Chemical Research, 34, 2314-2323, 1995.
  • Beltran FJ, Ovejero G, Rivas J. “Oxidation of polynuclear aromatic hydrocarbon in water by UV radiation in combination with hydrogen peroxide”. Industrial Engineering Chemical Research, 35, 883-889, 1996.